Advertisement
Review Article|Articles in Press

All Care is Brain Care

Neuro-Focused Quality Improvement in the Neonatal Intensive Care Unit
  • Melissa Liebowitz
    Affiliations
    Envision Physician Services, St. Francis Hospital, 6001 East Woodmen Road, Colorado Springs, CO 80923, USA
    Search for articles by this author
  • Katelin P. Kramer
    Correspondence
    Corresponding author. Department of Pediatrics, University of California, 550 16th Avenue, 5th Floor, San Francisco, CA 94143.
    Affiliations
    Department of Pediatrics, University of California, 550 16th Avenue, 5th Floor, San Francisco, CA 94143, USA

    University of California, Benioff Children’s Hospital, 550 16th Avenue, 5th Floor, San Francisco, CA 94143, USA
    Search for articles by this author
  • Elizabeth E. Rogers
    Affiliations
    Department of Pediatrics, University of California, 550 16th Avenue, 5th Floor, San Francisco, CA 94143, USA

    University of California, Benioff Children’s Hospital, 550 16th Avenue, 5th Floor, San Francisco, CA 94143, USA
    Search for articles by this author
Published:March 09, 2023DOI:https://doi.org/10.1016/j.clp.2023.01.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Spitzer A.R.
        Has quality improvement really improved outcomes for babies in the neonatal intensive care unit?.
        Clin Perinatol. 2017; 44: 469-483
        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012.
        JAMA. 2015; 314: 1039-1051
        • Kaempf J.
        • Morris M.
        • Steffen E.
        • et al.
        Continued improvement in morbidity reduction in extremely premature infants.
        Arch Dis Child Fetal Neonatal Ed. 2021; 106: 265-270
        • Pearlman S.A.
        Advancements in neonatology through quality improvement.
        J Perinatol. 2022; (Published online April 2)https://doi.org/10.1038/s41372-022-01383-9
        • Abiramalatha T.
        • Ramaswamy V.V.
        • Bandyopadhyay T.
        • et al.
        Delivery room interventions for hypothermia in preterm neonates: a systematic review and network meta-analysis.
        JAMA Pediatr. 2021; 175: e210775
        • Resch B.
        • Neubauer K.
        • Hofer N.
        • et al.
        Episodes of hypocarbia and early-onset sepsis are risk factors for cystic periventricular leukomalacia in the preterm infant.
        Early Hum Dev. 2012; 88: 27-31
        • Sewell E.
        • Roberts J.
        • Mukhopadhyay S.
        Association of infection in neonates and long-term neurodevelopmental outcome.
        Clin Perinatol. 2021; 48: 251-261
        • Ortgies T.
        • Rullmann M.
        • Ziegelhöfer D.
        • et al.
        The role of early-onset-sepsis in the neurodevelopment of very low birth weight infants.
        BMC Pediatr. 2021; 21: 289
        • Adams-Chapman I.
        • Heyne R.J.
        • DeMauro S.B.
        • et al.
        Neurodevelopmental impairment among extremely preterm infants in the neonatal research network.
        Pediatrics. 2018; 141
        • Bell E.F.
        • Hintz S.R.
        • Hansen N.I.
        • et al.
        Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018.
        JAMA. 2022; 327: 248-263
        • Oster M.E.
        • Lee K.A.
        • Honein M.A.
        • et al.
        Temporal trends in survival among infants with critical congenital heart defects.
        Pediatrics. 2013; 131: e1502-e1508
        • Politis M.D.
        • Bermejo-Sánchez E.
        • Canfield M.A.
        • et al.
        Prevalence and mortality in children with congenital diaphragmatic hernia: a multicountry study.
        Ann Epidemiol. 2021; 56: 61-69.e3
        • Volpe J.J.
        Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions.
        Pediatr Neurol. 2019; 95: 42-66
        • Miller S.P.
        • Ferriero D.M.
        From selective vulnerability to connectivity: insights from newborn brain imaging.
        Trends Neurosci. 2009; 32: 496-505
        • Montalva L.
        • Raffler G.
        • Riccio A.
        • et al.
        Neurodevelopmental impairment in children with congenital diaphragmatic hernia: not an uncommon complication for survivors.
        J Pediatr Surg. 2020; 55: 625-634
        • Elgendy M.M.
        • Puthuraya S.
        • LoPiccolo C.
        • et al.
        Neonatal stroke: clinical characteristics and neurodevelopmental outcomes.
        Pediatr Neonatol. 2022; 63: 41-47
        • Finder M.
        • Boylan G.B.
        • Twomey D.
        • et al.
        Two-Year neurodevelopmental outcomes after mild hypoxic ischemic encephalopathy in the era of therapeutic hypothermia.
        JAMA Pediatr. 2020; 174: 48-55
        • Gaudet I.
        • Paquette N.
        • Bernard C.
        • et al.
        Neurodevelopmental outcome of children with congenital heart disease: a cohort study from infancy to preschool age.
        J Pediatr. 2021; 239: 126-135.e5
        • Rogers E.E.
        • Hintz S.R.
        Early neurodevelopmental outcomes of extremely preterm infants.
        Semin Perinatol. 2016; 40: 497-509
        • Marlow N.
        Is survival and neurodevelopmental impairment at 2 years of age the gold standard outcome for neonatal studies?.
        Arch Dis Child Fetal Neonatal Ed. 2015; 100: F82-F84
        • Kilbride H.W.
        • Aylward G.P.
        • Carter B.
        What are we measuring as outcome? looking beyond neurodevelopmental impairment.
        Clin Perinatol. 2018; 45: 467-484
        • Huf I.U.
        • Baque E.
        • Colditz P.B.
        • et al.
        Neurological examination at 32-weeks postmenstrual age predicts 12-month cognitive outcomes in very preterm-born infants.
        Pediatr Res. 2022; https://doi.org/10.1038/s41390-022-02310-6
        • Noble Y.
        • Boyd R.
        Neonatal assessments for the preterm infant up to 4 months corrected age: a systematic review.
        Dev Med Child Neurol. 2012; 54: 129-139
        • Kwong A.K.L.
        • Doyle L.W.
        • Olsen J.E.
        • et al.
        Early motor repertoire and neurodevelopment at 2 years in infants born extremely preterm or extremely-low-birthweight.
        Dev Med Child Neurol. 2022; 64: 855-862
        • Salavati S.
        • Bos A.F.
        • Doyle L.W.
        • et al.
        Very preterm early motor repertoire and neurodevelopmental outcomes at 8 years.
        Pediatrics. 2021; : 148https://doi.org/10.1542/peds.2020-049572
        • Vandenberg K.A.
        Individualized developmental care for high risk newborns in the NICU: a practice guideline.
        Early Hum Dev. 2007; 83: 433-442
        • Als H.
        • Duffy F.H.
        • McAnulty G.B.
        Behavioral differences between preterm and full-term newborns as measured with the APIB system scores: I.
        Infant Behav Dev. 1988; 11: 305-318
        • Ment L.R.
        • Vohr B.
        • Allan W.
        • et al.
        Change in cognitive function over time in very low-birth-weight infants.
        JAMA. 2003; 289: 705-711
        • Breslau N.
        • Chilcoat H.D.
        • Susser E.S.
        • et al.
        Stability and change in children’s intelligence quotient scores: a comparison of two socioeconomically disparate communities.
        Am J Epidemiol. 2001; 154: 711-717
        • Manley B.J.
        • Roberts R.S.
        • Doyle L.W.
        • et al.
        Social variables predict gains in cognitive scores across the preschool years in children with birth weights 500 to 1250 grams.
        J Pediatr. 2015; 166: 870-876.e1
        • Crowley P.
        • Chalmers I.
        • Keirse M.J.
        The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials.
        Br J Obstet Gynaecol. 1990; 97: 11-25
        • Crowley P.
        • Roberts D.
        • Dalziel S.
        • et al.
        Antenatal corticosteroids to accelerate fetal lung maturation for women at risk of preterm birth. In: The Cochrane Collaboration.
        in: Cochrane database of systematic reviews: protocols. John Wiley & Sons, Ltd, 1996https://doi.org/10.1002/14651858.CD004454
        • McGoldrick E.
        • Stewart F.
        • Parker R.
        • et al.
        Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.
        Cochrane Database Syst Rev. 2020; 12: CD004454
        • Wirtschafter D.D.
        • Danielsen B.H.
        • Main E.K.
        • et al.
        Promoting antenatal steroid use for fetal maturation: results from the California Perinatal Quality Care Collaborative.
        J Pediatr. 2006; 148: 606-612
        • Gould J.B.
        • Bennett M.V.
        • Phibbs C.S.
        • et al.
        Population improvement bias observed in estimates of the impact of antenatal steroids to outcomes in preterm birth.
        J Pediatr. 2021; 232: 17-22.e2
        • Brookfield K.F.
        • Vinson A.
        Magnesium sulfate use for fetal neuroprotection.
        Curr Opin Obstet Gynecol. 2019; 31: 110-115
        • Rouse D.J.
        • Hirtz D.G.
        • Thom E.
        • et al.
        A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy.
        N Engl J Med. 2008; 359: 895-905
      1. Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial.
        Obstet Anesth Digest. 2007; 27: 175-176
        • Crowther C.A.
        • Hiller J.E.
        • Doyle L.W.
        • et al.
        Australasian Collaborative Trial of Magnesium Sulphate (ACTOMg SO4) Collaborative Group. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial.
        JAMA. 2003; 290: 2669-2676
        • Doyle L.W.
        • Crowther C.A.
        • Middleton P.
        • et al.
        Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus.
        Cochrane Database Syst Rev. 2009; 1: CD004661
        • American College of Obstetricians and Gynecologists Committee on Obstetric Practice
        Magnesium sulfate before anticipated preterm birth for neuroprotection: opinion No. 455.
        Obstet Gynecol. 2010; 115: 669-671
        • Royal College of Obstetricians and Gynaecologists
        Magnesium sulphate to prevent cerebral palsy following preterm birth.
        Scientific impact paper. 2011; : 29
        • Burhouse A.
        • Lea C.
        • Ray S.
        • et al.
        Preventing cerebral palsy in preterm labour: a multiorganisational quality improvement approach to the adoption and spread of magnesium sulphate for neuroprotection.
        BMJ Open Qual. 2017; 6: e000189
        • Bhatt S.
        • Alison B.J.
        • Wallace E.M.
        • et al.
        Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs.
        J Physiol (Lond). 2013; 591: 2113-2126
        • Rabe H.
        • Gyte G.M.
        • Díaz-Rossello J.L.
        • et al.
        Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes.
        Cochrane Database Syst Rev. 2019; 9: CD003248
        • The American College of O.
        • Committee opinion no G.
        684: delayed umbilical cord clamping after birth.
        Obstet Gynecol. 2017; 129: 1
        • The American Academy of P.
        Delayed umbilical cord clamping after birth.
        Pediatrics. 2017; 139https://doi.org/10.1542/peds.2017-0957
        • Jelin A.C.
        • Kuppermann M.
        • Erickson K.
        • et al.
        Obstetricians’ attitudes and beliefs regarding umbilical cord clamping.
        J Matern Fetal Neonatal Med. 2014; 27: 1457-1461
        • Bolstridge J.
        • Bell T.
        • Dean B.
        • et al.
        A quality improvement initiative for delayed umbilical cord clamping in very low-birthweight infants.
        BMC Pediatr. 2016; 16: 155
        • Pantoja A.F.
        • Ryan A.
        • Feinberg M.
        • et al.
        Implementing delayed cord clamping in premature infants.
        BMJ Open Qual. 2018; 7: e000219
        • Aziz K.
        • Chinnery H.
        • Lacaze-Masmonteil T.
        A single-center experience of implementing delayed cord clamping in babies born at less than 33 weeks’ gestational age.
        Adv Neonatal Care. 2012; 12: 371-376
        • Pauley A.N.
        • Roy A.
        • Balfaqih Y.
        • et al.
        A quality improvement project to delay umbilical cord clamping time.
        Pediatr Qual Saf. 2021; 6: e452
        • Chan S.
        • Duck M.
        • Frometa K.
        • et al.
        Improving the rate of delayed cord clamping in preterm infants: a quality improvement project. . Abstract presentation presented at the.
        Pediatric Academic Society. 2021; (Virtual)
        • Perlman J.M.
        • Wyllie J.
        • Kattwinkel J.
        • et al.
        Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations (reprint).
        Pediatrics. 2015; 136: S120-S166
        • Jacobs S.E.
        • Berg M.
        • Hunt R.
        • et al.
        Cooling for newborns with hypoxic ischaemic encephalopathy.
        Cochrane Database Syst Rev. 2013; 2013: CD003311
        • Thoresen M.
        • Tooley J.
        • Liu X.
        • et al.
        Time is brain: starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns.
        Neonatology. 2013; 104: 228-233
        • Olsen S.L.
        • Dejonge M.
        • Kline A.
        • et al.
        Optimizing therapeutic hypothermia for neonatal encephalopathy.
        Pediatrics. 2013; 131: e591-e603
        • Redpath S.
        • Moore H.
        • Sucha E.
        • et al.
        Therapeutic hypothermia on transport: the quest for efficiency: results of a quality improvement project.
        Pediatr Qual Saf. 2022; 7: e556
        • Ista E.
        • van der Hoven B.
        • Kornelisse R.F.
        • et al.
        Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis.
        Lancet Infect Dis. 2016; 16: 724-734
        • de Neef M.
        • Bakker L.
        • Dijkstra S.
        • et al.
        Effectiveness of a ventilator care bundle to prevent ventilator-associated pneumonia at the PICU: a systematic review and meta-analysis.
        Pediatr Crit Care Med. 2019; 20: 474-480
        • Lavallée J.F.
        • Gray T.A.
        • Dumville J.
        • et al.
        The effects of care bundles on patient outcomes: a systematic review and meta-analysis.
        Implement Sci. 2017; 12: 142
        • Vento M.
        • Cheung P.-Y.
        • Aguar M.
        The first golden minutes of the extremely-low-gestational-age neonate: a gentle approach.
        Neonatology. 2009; 95: 286-298
        • Wyckoff M.H.
        Initial resuscitation and stabilization of the periviable neonate: the Golden-Hour approach.
        Semin Perinatol. 2014; 38: 12-16
        • de Bijl-Marcus K.
        • Brouwer A.J.
        • De Vries L.S.
        • et al.
        Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: a multicentre cohort study.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 419-424
        • Murthy P.
        • Zein H.
        • Thomas S.
        • et al.
        Neuroprotection care bundle implementation to decrease acute brain injury in preterm infants.
        Pediatr Neurol. 2020; 110: 42-48
        • Kramer K.P.
        • Minot K.
        • Butler C.
        • et al.
        Reduction of severe intraventricular hemorrhage in preterm infants: a quality improvement project.
        Pediatrics. 2022; 149https://doi.org/10.1542/peds.2021-050652
        • McLendon D.
        • Check J.
        • Carteaux P.
        • et al.
        Implementation of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants.
        Pediatrics. 2003; 111: e497-e503
        • Schulz G.
        • Keller E.
        • Haensse D.
        • et al.
        Slow blood sampling from an umbilical artery catheter prevents a decrease in cerebral oxygenation in the preterm newborn.
        Pediatrics. 2003; 111: e73-e76
        • Kochan M.
        • Leonardi B.
        • Firestine A.
        • et al.
        Elevated midline head positioning of extremely low birth weight infants: effects on cardiopulmonary function and the incidence of periventricular-intraventricular hemorrhage.
        J Perinatol. 2019; 39: 54-62
        • Malusky S.
        • Donze A.
        Neutral head positioning in premature infants for intraventricular hemorrhage prevention: an evidence-based review.
        Neonatal Netw. 2011; 30: 381-396
        • Ronen G.M.
        • Penney S.
        • Andrews W.
        The epidemiology of clinical neonatal seizures in Newfoundland: a population-based study.
        J Pediatr. 1999; 134: 71-75
        • Glass H.
        • Wu Y.
        Epidemiology of neonatal seizures.
        J Pediatr Neurol. 2015; 07: 013-017
        • Jiang M.
        • Lee C.L.
        • Smith K.L.
        • et al.
        Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy.
        J Neurosci. 1998; 18: 8356-8368
        • McCabe B.K.
        • Silveira D.C.
        • Cilio M.R.
        • et al.
        Reduced neurogenesis after neonatal seizures.
        J Neurosci. 2001; 21: 2094-2103
        • Ben-Ari Y.
        • Holmes G.L.
        Effects of seizures on developmental processes in the immature brain.
        Lancet Neurol. 2006; 5: 1055-1063
        • McBride M.C.
        • Laroia N.
        • Guillet R.
        Electrographic seizures in neonates correlate with poor neurodevelopmental outcome.
        Neurology. 2000; 55: 506-513
        • Glass H.C.
        • Wirrell E.
        Controversies in neonatal seizure management.
        J Child Neurol. 2009; 24: 591-599
        • Sánchez Fernández I.
        • Abend N.S.
        • Agadi S.
        • et al.
        Time from convulsive status epilepticus onset to anticonvulsant administration in children.
        Neurology. 2015; 84: 2304-2311
        • Pollet S.
        • Bekmezian A.
        • Wilson-Ganz J.
        • et al.
        Innovative use of in-room technology to expedite treatment of seizures in hospitalized pediatric patients.
        Pediatr Qual Saf. 2019; 4: e143
        • Kramer K.
        • Bekmezian A.
        • Nash K.
        • et al.
        Expediting treatment of seizures in the intensive care nursery.
        Pediatrics. 2021; 148https://doi.org/10.1542/peds.2020-013730
        • Brummelte S.
        • Grunau R.E.
        • Chau V.
        • et al.
        Procedural pain and brain development in premature newborns.
        Ann Neurol. 2012; 71: 385-396
        • Duerden E.G.
        • Grunau R.E.
        • Guo T.
        • et al.
        Early procedural pain is associated with regionally-specific alterations in thalamic development in preterm neonates.
        J Neurosci. 2018; 38: 878-886
        • McGlothlin J.P.
        • Crawford E.
        • Wyatt J.
        • et al.
        Poke-R - using analytics to reduce patient.
        in: Proceedings of the 10th international Joint Conference on Biomedical Engineering systems and Technologies. SCITEPRESS - Science and Technology Publications, 2017: 362-369https://doi.org/10.5220/0006174603620369
        • Conde-Agudelo A.
        • Díaz-Rossello J.L.
        Kangaroo mother care to reduce morbidity and mortality in low birthweight infants.
        Cochrane Database Syst Rev. 2014; 4: CD002771
        • Hake-Brooks S.J.
        • Anderson G.C.
        Kangaroo care and breastfeeding of mother-preterm infant dyads 0-18 months: a randomized, controlled trial.
        Neonatal Netw. 2008; 27: 151-159
        • Carbasse A.
        • Kracher S.
        • Hausser M.
        • et al.
        Safety and effectiveness of skin-to-skin contact in the NICU to support neurodevelopment in vulnerable preterm infants.
        J Perinat Neonatal Nurs. 2013; 27: 255-262
        • Pineda R.
        • Bender J.
        • Hall B.
        • et al.
        Parent participation in the neonatal intensive care unit: predictors and relationships to neurobehavior and developmental outcomes.
        Early Hum Dev. 2018; 117: 32-38
        • Marvin M.M.
        • Gardner F.C.
        • Sarsfield K.M.
        • et al.
        Increased frequency of skin-to-skin contact is associated with enhanced vagal tone and improved health outcomes in preterm neonates.
        Am J Perinatol. 2019; 36: 505-510
        • Schneider C.
        • Charpak N.
        • Ruiz-Peláez J.G.
        • et al.
        Cerebral motor function in very premature-at-birth adolescents: a brain stimulation exploration of kangaroo mother care effects.
        Acta Paediatr. 2012; 101: 1045-1053
        • Pineda R.G.
        Feeding: an important, complex skill that impacts nutritional, social, motor and sensory experiences.
        Acta Paediatr. 2016; 105: e458
        • Grabill M.
        • Pineda R.
        • VanRoekel K.
        Early feeding behaviors in preterm infants and their relationships to neurobehavior.
        Am J Occup Ther. 2019; 73 (7311500021p1)
      2. Ludwig S.M. and Waitzman K.A., Changing Feeding Documentation to Reflect Infant-Driven Feeding Practice, Newborn Infant Nurs Rev, 7, 2007, 155–160.

        • Fry T.J.
        • Marfurt S.
        • Wengier S.
        Systematic review of quality improvement initiatives related to cue-based feeding in preterm infants.
        Nurs Womens Health. 2018; 22: 401-410
        • Osman A.
        • Ibrahim M.
        • Saunders J.
        • et al.
        Effects of implementation of infant-driven oral feeding guideline on preterm infants’ abilities to achieve oral feeding milestones, in a tertiary neonatal intensive care unit.
        Nutr Clin Pract. 2021; 36: 1262-1269
        • Gentle S.J.
        • Meads C.
        • Ganus S.
        • et al.
        Improving time to independent oral feeding to expedite hospital discharge in preterm infants.
        Pediatrics. 2022; 149https://doi.org/10.1542/peds.2021-052023
        • de Graaf J.
        • van Lingen R.A.
        • Simons S.H.P.
        • et al.
        Long-term effects of routine morphine infusion in mechanically ventilated neonates on children’s functioning: five-year follow-up of a randomized controlled trial.
        Pain. 2011; 152: 1391-1397
        • Grabski D.F.
        • Vavolizza R.D.
        • Lepore S.
        • et al.
        A quality improvement intervention to reduce postoperative opiate use in neonates.
        Pediatrics. 2020; 146https://doi.org/10.1542/peds.2019-3861
        • Grabski D.F.
        • Vavolizza R.D.
        • Roecker Z.
        • et al.
        Reduction of post-operative opioid use in neonates following open congenital diaphragmatic hernia repairs: a quality improvement initiative.
        J Pediatr Surg. 2022; 57: 45-51
        • Øberg G.K.
        • Handegård B.H.
        • Campbell S.K.
        • et al.
        Two-year motor outcomes associated with the dose of NICU based physical therapy: the Noppi RCT.
        Early Hum Dev. 2022; 174: 105680
        • Ohlsson A.
        • Jacobs S.E.
        NIDCAP: a systematic review and meta-analyses of randomized controlled trials.
        Pediatrics. 2013; 131: e881-e893
        • Aita M.
        • De Clifford Faugère G.
        • Lavallée A.
        • et al.
        Effectiveness of interventions on early neurodevelopment of preterm infants: a systematic review and meta-analysis.
        BMC Pediatr. 2021; 21: 210
        • Peters K.L.
        • Rosychuk R.J.
        • Hendson L.
        • et al.
        Improvement of short- and long-term outcomes for very low birth weight infants: edmonton NIDCAP trial.
        Pediatrics. 2009; 124: 1009-1020
        • Wielenga J.M.
        • Smit B.J.
        • Merkus M.P.
        • et al.
        Development and growth in very preterm infants in relation to NIDCAP in a Dutch NICU: two years of follow-up.
        Acta Paediatr. 2009; 98: 291-297
        • Moody C.
        • Callahan T.J.
        • Aldrich H.
        • et al.
        Early initiation of newborn individualized developmental care and assessment program (NIDCAP) reduces length of stay: a quality improvement project.
        J Pediatr Nurs. 2017; 32: 59-63
        • Pineda R.
        • Raney M.
        • Smith J.
        Supporting and enhancing NICU sensory experiences (SENSE): defining developmentally-appropriate sensory exposures for high-risk infants.
        Early Hum Dev. 2019; 133: 29-35
        • Pineda R.
        • Smith J.
        • Roussin J.
        • et al.
        Randomized clinical trial investigating the effect of consistent, developmentally-appropriate, and evidence-based multisensory exposures in the NICU.
        J Perinatol. 2021; 41: 2449-2462
        • Pineda R.
        Sensory optimization of the hospital environment (SOOTHE). NCT05230199.
        (Available at:) (Accessed November 1, 2022)
        • Bhutta Z.A.
        • Guerrant R.L.
        • Nelson C.A.
        Neurodevelopment, nutrition, and inflammation: the evolving global child health landscape.
        Pediatrics. 2017; 139: S12-S22
        • Anderson P.J.
        • Treyvaud K.
        • Spittle A.J.
        Early developmental interventions for infants born very preterm - what works?.
        Semin Fetal Neonatal Med. 2020; 25: 101119
        • Fauth R.C.
        • Kotake C.
        • Manning S.E.
        • et al.
        Timeliness of early identification and referral of infants with social and environmental risks.
        Prev Sci. 2022; https://doi.org/10.1007/s11121-022-01453-6
        • Hintz S.R.
        • Gould J.B.
        • Bennett M.V.
        • et al.
        Referral of very low birth weight infants to high-risk follow-up at neonatal intensive care unit discharge varies widely across California.
        J Pediatr. 2015; 166: 289-295
        • Litt J.S.
        • Edwards E.M.
        • Lainwala S.
        • et al.
        Optimizing high-risk infant follow-up in nonresearch-based paradigms: the new England follow-up network.
        Pediatr Qual Saf. 2020; 5: e287
        • Lakshmanan A.
        • Rogers E.E.
        • Lu T.
        • et al.
        Disparities and early engagement associated with the 18-36 month high risk infant follow up visit among very low birthweight infants in California.
        J Pediatr. 2022; https://doi.org/10.1016/j.jpeds.2022.05.026
        • Castrodale V.
        • Rinehart S.
        The golden hour: improving the stabilization of the very low birth-weight infant.
        Adv Neonatal Care. 2014; 14 (quiz 15): 9-14
        • Reuter S.
        • Messier S.
        • Steven D.
        The neonatal Golden Hour--intervention to improve quality of care of the extremely low birth weight infant.
        S D Med. 2014; 67 (397-403, 405)
        • Lambeth T.M.
        • Rojas M.A.
        • Holmes A.P.
        • et al.
        First golden hour of life: a quality improvement initiative.
        Adv Neonatal Care. 2016; 16: 264-272
        • Harriman T.L.
        • Carter B.
        • Dail R.B.
        • et al.
        Golden hour protocol for preterm infants: a quality improvement project.
        Adv Neonatal Care. 2018; 18: 462-470
        • Peleg B.
        • Globus O.
        • Granot M.
        • et al.
        Golden Hour” quality improvement intervention and short-term outcome among preterm infants.
        J Perinatol. 2019; 39: 387-392
        • WHO Immediate KMC Study Group
        • Arya S.
        • Naburi H.
        • et al.
        Immediate “kangaroo mother care” and survival of infants with low birth weight.
        N Engl J Med. 2021; 384: 2028-2038
        • Levesque V.
        • Johnson K.
        • McKenzie A.
        • et al.
        Implementing a skin-to-skin care and parent touch initiative in a tertiary cardiac and surgical neonatal intensive care unit.
        Adv Neonatal Care. 2021; 21: E24-E34
        • Nation H.
        • Sanlorenzo L.
        • Lebar K.
        • et al.
        A quality improvement project to increase frequency of skin-to-skin contact for extreme low-birth-weight infants in the neonatal intensive care unit.
        J Perinat Neonatal Nurs. 2021; 35: 247-257
        • Minot K.L.
        • Kramer K.P.
        • Butler C.
        • et al.
        Increasing early skin-to-skin in extremely low birth weight infants.
        Neonatal Netw. 2021; 40: 242-250