Advertisement
Review Article| Volume 49, ISSUE 4, P981-993, December 2022

Advances in the Treatment of Neonatal Biliary Disease

  • Sarah Mohamedaly
    Affiliations
    Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, San Francisco, CA 94143-0570, USA
    Search for articles by this author
  • Amar Nijagal
    Correspondence
    Corresponding author. Division of Pediatric Surgery, University of California, San Francisco, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, San Francisco, CA 94143-0570.
    Affiliations
    Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, San Francisco, CA 94143-0570, USA

    The Liver Center, University of California, San Francisco, CA, USA

    The Pediatric Liver Center at UCSF Benioff Childrens’ Hospitals, San Francisco, CA, USA
    Search for articles by this author
Published:October 09, 2022DOI:https://doi.org/10.1016/j.clp.2022.07.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Verkade H.J.
        • Bezerra J.A.
        • Davenport M.
        • et al.
        Biliary atresia and other cholestatic childhood diseases: advances and future challenges.
        J Hepatol. 2016; 65: 631-642
        • Hartley J.L.
        • Davenport M.
        • Kelly D.A.
        Biliary atresia.
        Lancet. 2009; 374: 1704-1713
        • Harpavat S.
        • Garcia-Prats J.A.
        • Shneider B.L.
        Newborn bilirubin screening for biliary atresia.
        (Available at:) (Accessed August 10, 2016)
        • Schwarz K.B.
        • Haber B.H.
        • Rosenthal P.
        • et al.
        Extra-hepatic anomalies in infants with biliary atresia: results of a large prospective North American multi-center study.
        Hepatology. 2013; 58: 1724-1731
        • Lakshminarayanan B.
        • Davenport M.
        Biliary atresia: a comprehensive review.
        J Autoimmun. 2016; 73: 1-9
        • Caponcelli E.
        • Knisely A.S.
        • Davenport M.
        Cystic biliary atresia: an etiologic and prognostic subgroup.
        J Pediatr Surg. 2008; 43: 1619-1624
        • De Tommaso A.M.
        • Andrade P.D.
        • Costa S.C.
        • et al.
        High frequency of Human Cytomegalovirus DNA in the liver of infants with extrahepatic neonatal cholestasis.
        BMC Infect Dis. 2005; 5: 108
        • Zani A.
        • Quaglia A.
        • Hadzić N.
        • et al.
        Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup.
        J Pediatr Surg. 2015; 50: 1739-1745
        • Thomas H.
        MMP7 — a diagnostic biomarker for biliary atresia.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 68
        • Huang C.C.
        • Chuang J.H.
        • Chou M.H.
        • et al.
        Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis.
        Mod Pathol. 2005; 18: 941-950
        • Lertudomphonwanit C.
        • Mourya R.
        • Fei L.
        • et al.
        Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia.
        Sci Translational Med. 2017; 9: eaan8462
        • Kerola A.
        • Lampela H.
        • Lohi J.
        • et al.
        Increased MMP-7 expression in biliary epithelium and serum underpins native liver fibrosis after successful portoenterostomy in biliary atresia.
        J Pathol Clin Res. 2016; 2: 187-198
        • Schreiber R.A.
        • Barker C.C.
        • Roberts E.A.
        • et al.
        Biliary atresia: the Canadian experience.
        The J Pediatr. 2007; 151: 659-665.e1
        • Bezerra J.A.
        • Wells R.G.
        • Mack C.L.
        • et al.
        Biliary atresia: clinical and research challenges for the Twenty-first Century.
        Hepatology. 2018; 68: 1163-1173
        • Serinet M.O.
        • Wildhaber B.E.
        • Broué P.
        • et al.
        Impact of age at Kasai operation on its results in late childhood and Adolescence: a Rational Basis for biliary atresia Screening.
        Pediatrics. 2009; 123: 1280-1286
        • Kiblawi R.
        • Zoeller C.
        • Zanini A.
        • et al.
        Laparoscopic versus open pediatric surgery: three decades of comparative studies.
        Eur J Pediatr Surg. 2022; 32: 009-025
        • Chan K.W.E.
        • Lee K.H.
        • Wong H.Y.V.
        • et al.
        Ten-year native liver survival rate after laparoscopic and open Kasai portoenterostomy for biliary atresia.
        J Laparoendoscopic Adv Surg Tech. 2019; 29: 121-125
        • Chan K.W.E.
        • Lee K.H.
        • Tsui S.Y.B.
        • et al.
        Laparoscopic versus open Kasai portoenterostomy in infant with biliary atresia: a retrospective review on the 5-year native liver survival.
        Pediatr Surg Int. 2012; 28: 1109-1113
        • Hussain M.H.
        • Alizai N.
        • Patel B.
        Outcomes of laparoscopic Kasai portoenterostomy for biliary atresia: a systematic review.
        J Pediatr Surg. 2017; 52: 264-267
        • Huang S.Y.
        • Yeh C.M.
        • Chen H.C.
        • et al.
        Reconsideration of laparoscopic Kasai operation for biliary atresia.
        J Laparoendoscopic Adv Surg Tech. 2018; 28: 229-234
        • Hinojosa-Gonzalez D.E.
        • Bueno L.C.
        • Roblesgil-Medrano A.
        • et al.
        Laparoscopic vs open portoenterostomy in biliary atresia: a systematic review and meta-analysis.
        Pediatr Surg Int. 2021; 37: 1477-1487
        • Shirota C.
        • Hinoki A.
        • Tainaka T.
        • et al.
        Laparoscopic Kasai portoenterostomy can be a standard surgical procedure for treatment of biliary atresia.
        World J Gastrointest Surg. 2022; 14: 56-63
        • Takeda M.
        • Sakamoto S.
        • Uchida H.
        • et al.
        Comparative study of open and laparoscopic Kasai portoenterostomy in children undergoing living donor liver transplantation for biliary atresia.
        Pediatr Surg Int. 2021; 37: 1683-1691
        • Ji Y.
        • Yang K.
        • Zhang X.
        • et al.
        Learning curve of laparoscopic Kasai portoenterostomy for biliary atresia: report of 100 cases.
        BMC Surg. 2018; 18: 107
        • van der Poel M.J.
        • Fichtinger R.S.
        • Bemelmans M.
        • et al.
        Implementation and outcome of minor and major minimally invasive liver surgery in The Netherlands.
        HPB. 2019; 21: 1734-1743
        • Kasahara M.
        • Umeshita K.
        • Sakamoto S.
        • et al.
        Liver transplantation for biliary atresia: a systematic review.
        Pediatr Surg Int. 2017; 33: 1289-1295
        • Squires R.H.
        • Ng V.
        • Romero R.
        • et al.
        Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the american association for the study of liver diseases, american society of transplantation and the north american society for pediatric gastroenterology, hepatology and nutrition.
        Hepatology. 2014; 60: 362-398
        • Davenport M.
        • Puricelli V.
        • Farrant P.
        • et al.
        The outcome of the older (≥100 days) infant with biliary atresia.
        J Pediatr Surg. 2004; 39: 575-581
        • Davenport M.
        Adjuvant therapy in biliary atresia: hopelessly optimistic or potential for change?.
        Pediatr Surg Int. 2017; 33: 1263-1273
        • Nijagal A.
        • Perito E.R.
        Treating biliary atresia: the challenge continues.
        J Pediatr Gastroenterol Nutr. 2019; 68: 464-465
        • Mack C.L.
        • Spino C.
        • Alonso E.M.
        • et al.
        A phase I/IIa trial of intravenous Immunoglobulin following portoenterostomy in biliary atresia.
        J Pediatr Gastroenterol Nutr. 2019; 68: 495-501
        • Bu L.N.
        • Chen H.L.
        • Chang C.J.
        • et al.
        Prophylactic oral antibiotics in prevention of recurrent cholangitis after the Kasai portoenterostomy.
        J Pediatr Surg. 2003; 38: 590-593
        • Decharun K.
        • Leys C.M.
        • West K.W.
        • et al.
        Prophylactic antibiotics for prevention of cholangitis in patients with biliary atresia status post-Kasai portoenterostomy: a systematic review.
        Clin Pediatr (Phila). 2016; 55: 66-72
        • Boster J.M.
        • Feldman A.G.
        • Mack C.L.
        • et al.
        Malnutrition in biliary atresia: assessment, management, and outcomes.
        Liver Transplant. 2022; 28: 483-492
        • Barshes N.R.
        • Chang I.F.
        • Karpen S.J.
        • et al.
        Impact of Pretransplant growth retardation in pediatric liver transplantation.
        J Pediatr Gastroenterol Nutr. 2006; 43: 89-94
        • Chardot C.
        • Buet C.
        • Serinet M.O.
        • et al.
        Improving outcomes of biliary atresia: French national series 1986-2009.
        J Hepatol. 2013; 58: 1209-1217
        • Wildhaber B.E.
        • Majno P.
        • Mayr J.
        • et al.
        Biliary atresia: Swiss national study, 1994-2004.
        J Pediatr Gastroenterol Nutr. 2008; 46: 299-307
        • Mack C.L.
        • Tucker R.M.
        • Lu B.R.
        • et al.
        Cellular and Humoral autoimmunity Directed at bile duct Epithelia in murine biliary atresia.
        Hepatology. 2006; 44: 1231-1239
        • Shivakumar P.
        • Sabla G.
        • Mohanty S.
        • et al.
        Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia.
        Gastroenterology. 2007; 133: 268-277
        • LU B.R.
        • BRINDLEY S.M.
        • TUCKER R.M.
        • et al.
        α-Enolase autoantibodies Cross-Reactive to Viral Proteins in a Mouse model of biliary atresia.
        Gastroenterology. 2010; 139: 1753-1761
        • Pang S.Y.
        • Dai Y.M.
        • Zhang R.Z.
        • et al.
        Autoimmune liver disease-related autoantibodies in patients with biliary atresia.
        World J Gastroenterol. 2018; 24: 387-396
        • Wang J.
        • Xu Y.
        • Chen Z.
        • et al.
        Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia.
        Cell. 2020; 183 (e26): 1867-1883
        • Mohanty S.K.
        • Donnelly B.
        • Temple H.
        • et al.
        A rotavirus-induced mouse model to study biliary atresia and neonatal cholestasis.
        in: Vinken M. Experimental cholestasis research. Methods in molecular biology. Springer, New York2019: 259-271
        • Riepenhoff-talty M.
        • Schaekel K.
        • Clark H.F.
        • et al.
        Group A Rotaviruses Produce extrahepatic biliary obstruction in orally Inoculated Newborn Mice.
        Pediatr Res. 1993; 33: 394-399
        • Allen S.R.
        • Jafri M.
        • Donnelly B.
        • et al.
        Effect of rotavirus Strain on the murine model of biliary atresia.
        J Virol. 2007; 81: 1671-1679
        • Alkhani A.
        • Levy C.S.
        • Tsui M.
        • et al.
        Ly6c Lo non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation.
        Scientific Rep. 2020; 10: 7165
        • Holterman A.
        • Nguyen H.P.A.
        • Nadler E.
        • et al.
        Granulocyte-colony stimulating factor GCSF mobilizes hematopoietic stem cells in Kasai patients with biliary atresia in a phase 1 study and improves short term outcome.
        J Pediatr Surg. 2021; 56: 1179-1185
        • Holterman A.-X.
        Granulocyte-colony stimulating factor Adjunct therapy for biliary atresia: Part II of a prospective, randomized Controlled, multi-Institutional trial. clinicaltrials.gov.
        (Available at:)
        • Harpavat S.
        A phase II trial of pentoxifylline in Newly-diagnosed biliary atresia. clinicaltrials.gov.
        (Available at:)
        • Harpavat S.
        A phase 2 trial of N-acetylcysteine in biliary atresia after Kasai portoenterostomy. clinicaltrials.gov.
        (Available at:)
        • Mirum Pharmaceuticals
        Inc. Randomized, Double-Blind, Placebo-Controlled phase 2 study to evaluate the efficacy and safety of Maralixibat in the treatment of subjects with biliary atresia after Hepatoportoenterostomy. clinicaltrials.gov.
        (Available at:)
        • Albireo A.
        Double-blind, randomized, Placebo-Controlled study to evaluate the efficacy and safety of Odevixibat (A4250) in children with biliary atresia who have undergone a Kasai Hepatoportoenterostomy. clinicaltrials.gov.
        (Available at:)
        • Soares K.C.
        • Goldstein S.D.
        • Ghaseb M.A.
        • et al.
        Pediatric choledochal cysts: diagnosis and current management.
        Pediatr Surg Int. 2017; 33: 637-650
        • Jones R.E.
        • Zagory J.A.
        • Clark R.A.
        • et al.
        A narrative review of the modern surgical management of pediatric choledochal cysts.
        Transl Gastroenterol Hepatol. 2021; 6: 37
        • Ashcraft K.W.
        • Holcomb G.W.
        • Murphy J.P.
        • et al.
        Ashcraft’s pediatric surgery.
        Saunders/Elsevier, 2010
        • Singham J.
        • Yoshida E.M.
        • Scudamore C.H.
        Choledochal cysts: Part 1 of 3: classification and pathogenesis.
        Can J Surg. 2009; 52: 434-440
        • Todani T.
        • Watanabe Y.
        • Toki A.
        • et al.
        Classification of congenital biliary cystic disease: special reference to type Ic and IVA cysts with primary ductal stricture.
        J Hepato-Biliary-Pancreatic Surg. 2003; 10: 340-344
        • Law R.
        • Topazian M.
        Diagnosis and treatment of Choledochoceles.
        Clin Gastroenterol Hepatol. 2014; 12: 196-203
        • Jabłońska B.
        Biliary cysts: etiology, diagnosis and management.
        World J Gastroenterol. 2012; 18: 4801-4810
        • Schwab M.E.
        • Song H.
        • Mattis A.
        • et al.
        De novo somatic mutations and KRAS amplification are associated with cholangiocarcinoma in a patient with a history of choledochal cyst.
        J Pediatr Surg. 2020; 55: 2657-2661
        • Yeung F.
        • Fung A.C.H.
        • Chung P.H.Y.
        • et al.
        Short-term and long-term outcomes after Roux-en-Y hepaticojejunostomy versus hepaticoduodenostomy following laparoscopic excision of choledochal cyst in children.
        Surg Endosc. 2020; 34: 2172-2177
        • Liem N.T.
        • Pham H.D.
        • Dung L.A.
        • et al.
        Early and Intermediate outcomes of laparoscopic surgery for choledochal cysts with 400 patients.
        J Laparoendoscopic Adv Surg Tech. 2012; 22: 599-603
        • Santore M.T.
        • Deans K.J.
        • Behar B.J.
        • et al.
        Laparoscopic hepaticoduodenostomy versus open hepaticoduodenostomy for reconstruction after resection of choledochal cyst.
        J Laparoendoscopic Adv Surg Tech. 2011; 21: 375-378
        • Zhen C.
        • Xia Z.
        • Long L.
        • et al.
        Laparoscopic excision versus open excision for the treatment of choledochal cysts: a systematic review and meta-analysis.
        Int Surg. 2015; 100: 115-122
        • Margonis G.A.
        • Spolverato G.
        • Kim Y.
        • et al.
        Minimally invasive resection of choledochal cyst: a feasible and safe surgical option.
        J Gastrointest Surg. 2015; 19: 858-865
        • Qiao G.
        • Li L.
        • Li S.
        • et al.
        Laparoscopic cyst excision and Roux-Y hepaticojejunostomy for children with choledochal cysts in China: a multicenter study.
        Surg Endosc. 2015; 29: 140-144
        • She W.H.
        • Chung H.Y.
        • Lan L.C.L.
        • et al.
        Management of choledochal cyst: 30 years of experience and results in a single center.
        J Pediatr Surg. 2009; 44: 2307-2311
        • Foo D.C.
        • Wong K.K.
        • Lan L.C.
        • et al.
        Impact of prenatal diagnosis on choledochal cysts and the benefits of early excision.
        J Paediatrics Child Health. 2009; 45: 28-30
        • Tsai M.S.
        • Lin W.H.
        • Hsu W.M.
        • et al.
        Clinicopathological Feature and surgical outcome of choledochal cyst in different age groups: the implication of surgical timing.
        J Gastrointest Surg. 2008; 12: 2191
        • Madadi-Sanjani O.
        • Wirth T.C.
        • Kuebler J.F.
        • et al.
        Choledochal cyst and malignancy: a Plea for Lifelong follow-up.
        Eur J Pediatr Surg. 2019; 29: 143-149
        • ten Hove A.
        • de Meijer V.E.
        • Hulscher J.B.F.
        • et al.
        Meta-analysis of risk of developing malignancy in congenital choledochal malformation.
        Br J Surg. 2018; 105: 482-490
        • Weinberg B.A.
        • Xiu J.
        • Lindberg M.R.
        • et al.
        Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets.
        J Gastrointest Oncol. 2019; 10: 652-662
        • Drabek J.
        • Keil R.
        • Stovicek J.
        • et al.
        The role of endoscopic retrograde cholangiopancreatography in choledochal cysts and/or abnormal pancreatobiliary junction in children.
        Prz Gastroenterol. 2017; 12: 303-309
        • Yodice M.
        • Choma J.
        • Tadros M.
        The Expansion of cholangioscopy: established and investigational Uses of SpyGlass in biliary and pancreatic Disorders.
        Diagnostics (Basel). 2020; 10: 132
        • Navaneethan U.
        • Njei B.
        • Lourdusamy V.
        • et al.
        Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis.
        Gastrointest Endosc. 2015; 81: 168-176
        • Rowland K.J.
        • Cunningham A.J.
        • Jazrawi S.F.
        • et al.
        Novel application of SpyGlassTM cholangioscopy in the diagnosis and treatment of extrahepatic biliary obstruction in infants.
        J Pediatr Surg Case Rep. 2018; 38: 19-22
        • Mou S.
        • Waxman I.
        • Chennat J.
        Peroral cholangioscopy in roux-en-Y hepaticojejunostomy anatomy by using the SpyGlass Direct visualization system (with video).
        Gastrointest Endosc. 2010; 72: 458-460
        • Hülagü S.
        • Şirin G.
        • Duman A.E.
        • et al.
        Use of SpyGlass for peroral cholangioscopy in the diagnosis and treatment of hepatobiliary diseases in over five years follow-up: a single centre experience.
        Turk J Gastroenterol. 2019; 30: 1044-1054
        • Siddiqui A.A.
        • Mehendiratta V.
        • Jackson W.
        • et al.
        Identification of cholangiocarcinoma by using the Spyglass Spyscope system for peroral cholangioscopy and biopsy Collection.
        Clin Gastroenterol Hepatol. 2012; 10: 466-471
        • Ramchandani M.
        • Reddy D.N.
        • Gupta R.
        • et al.
        Role of single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary lesions: a single-center, prospective study.
        Gastrointest Endosc. 2011; 74: 511-519
        • Harpavat S.
        • Raijman I.
        • Hernandez J.A.
        • et al.
        Single-center experience of choledochoscopy in pediatric patients.
        Gastrointestinal Endoscopy. 2012; 76: 685-688