Advertisement
Review Article| Volume 49, ISSUE 4, P873-891, December 2022

Updates in Neonatal Extracorporeal Membrane Oxygenation and the Artificial Placenta

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bartlett R.H.
        • Gazzaniga A.
        • Fong S.
        • et al.
        Prolonged extracorporeal cardiopulmonary support in man.
        J Thorac Cardiovasc Surg. 1974; 68: 918-932
        • Church J.T.
        • Kim A.C.
        • Erickson K.M.
        • et al.
        Pushing the boundaries of ECLS: outcomes in <34 week EGA neonates.
        J Pediatr Surg. 2017; 52: 1810-1815
        • Wild K.T.
        • Rintoul N.
        • Kattan J.
        • et al.
        Extracorporeal life support organization (ELSO): guidelines for neonatal respiratory failure.
        Asaio j. 2020; 66: 463-470
        • Fallon B.P.
        • Gadepalli S.K.
        • Hirschl R.B.
        Pediatric and neonatal extracorporeal life support: current state and continuing evolution.
        Pediatr Surg Int. 2021; 37: 17-35
        • Baumgart S.
        • Hirschl R.B.
        • Butler S.Z.
        • et al.
        Diagnosis-related criteria in the consideration of extracorporeal membrane oxygenation in neonates previously treated with high-frequency jet ventilation.
        Pediatrics. 1992; 89: 491-494
        • Smith D.W.
        • Frankel L.R.
        • Derish M.T.
        • et al.
        High-frequency jet ventilation in children with the adult respiratory distress syndrome complicated by pulmonary barotrauma.
        Pediatr Pulmonol. 1993; 15: 279-286
        • Swaniker F.
        • Kolla S.
        • Moler F.
        • et al.
        Extracorporeal life support outcome for 128 pediatric patients with respiratory failure.
        J Pediatr Surg. 2000; 35: 197-202
        • Cilley R.E.
        • Zwischenberger J.B.
        • Andrews A.F.
        • et al.
        Intracranial hemorrhage during extracorporeal membrane oxygenation in neonates.
        Pediatrics. 1986; 78: 699-704
        • Jobe A.H.
        Mechanisms of lung injury and bronchopulmonary dysplasia.
        Am J Perinatol. 2016; 33: 1076-1078
        • Lewis D.A.
        • Gauger P.
        • Delosh T.N.
        • et al.
        The effect of pre-ECLS ventilation time on survival and respiratory morbidity in the neonatal population.
        J Pediatr Surg. 1996; 31 ([discussion: 1114-5]): 1110-1114
        • Zabrocki L.A.
        • Brogan T.V.
        • Statler K.
        • et al.
        Extracorporeal membrane oxygenation for pediatric respiratory failure: survival and predictors of mortality.
        Crit Care Med. 2011; 39: 364-370
        • Domico M.B.
        • Ridout D.A.
        • Bronicki R.
        • et al.
        The impact of mechanical ventilation time before initiation of extracorporeal life support on survival in pediatric respiratory failure: a review of the Extracorporeal Life Support Registry.
        Pediatr Crit Care Med. 2012; 13: 16-21
        • Mok Y.H.
        • Lee J.H.
        • Cheifetz I.M.
        Neonatal extracorporeal membrane oxygenation: Update on management strategies and long-term outcomes.
        Adv Neonatal Care. 2016; 16: 26-36
        • Ijsselstijn H.
        • Schiller R.M.
        • Holder C.
        • et al.
        Extracorporeal life support organization (ELSO) guidelines for follow-up after neonatal and pediatric extracorporeal membrane oxygenation.
        Asaio j. 2021; 67: 955-963
        • Madderom M.J.
        • Reuser J.J.
        • Utens E.M.
        • et al.
        Neurodevelopmental, educational and behavioral outcome at 8 years after neonatal ECMO: a nationwide multicenter study.
        Intensive Care Med. 2013; 39: 1584-1593
        • Bartlett R.H.
        Esperanza: the first neonatal ECMO patient.
        Asaio j. 2017; 63: 832-843
        • Bartlett R.H.
        • Andrews A.F.
        • Toomasian J.M.
        • et al.
        Extracorporeal membrane oxygenation for newborn respiratory failure: forty-five cases.
        Surgery. 1982; 92: 425-433
        • Johnson K.
        • Jarobe M.D.
        • Mychaliska G.B.
        • et al.
        Is there a best approach for extracorporeal life support cannulation: a review of the extracorporeal life support organization.
        J Pediatr Surg. 2018; 53: 1301-1304
        • Duggan E.M.
        • Maitre N.
        • Zhai A.
        • et al.
        Neonatal carotid repair at ECMO decannulation: patency rates and early neurologic outcomes.
        J Pediatr Surg. 2015; 50: 64-68
        • Teele S.A.
        • Salvin J.W.
        • Barrett C.S.
        • et al.
        The association of carotid artery cannulation and neurologic injury in pediatric patients supported with venoarterial extracorporeal membrane oxygenation∗.
        Pediatr Crit Care Med. 2014; 15: 355-361
        • Wien M.A.
        • Witehead M.T.
        • Bulas D.
        • et al.
        Patterns of brain injury in newborns treated with extracorporeal membrane oxygenation.
        AJNR Am J Neuroradiol. 2017; 38: 820-826
        • Rollins M.D.
        • Hubbard A.
        • Zabrocki L.
        • et al.
        Extracorporeal membrane oxygenation cannulation trends for pediatric respiratory failure and central nervous system injury.
        J Pediatr Surg. 2012; 47: 68-75
        • Jsselstijn H.I.
        • Hunfeld M.
        • Schiller R.
        • et al.
        Improving long-term outcomes after extracorporeal membrane oxygenation: from Observational follow-up programs toward risk stratification.
        Front Pediatr. 2018; 6: 177
        • Drucker N.A.
        • Wang S.K.
        • Markel T.A.
        • et al.
        Practice patterns in imaging guidance for ECMO cannulation: a survey of the American Pediatric Surgical Association.
        J Pediatr Surg. 2020; 55: 1457-1462
        • Klein M.D.
        • Andrews A.F.
        • Wesley J.R.
        • et al.
        Venovenous perfusion in ECMO for newborn respiratory insufficiency. A clinical comparison with venoarterial perfusion.
        Ann Surg. 1985; 201: 520-526
        • Bunge J.J.H.
        • Caliskan K.
        • Gommers D.
        • et al.
        Right ventricular dysfunction during acute respiratory distress syndrome and veno-venous extracorporeal membrane oxygenation.
        J Thorac Dis. 2018; 10: S674-S682
        • Berdajs D.
        Bicaval dual-lumen cannula for venovenous extracorporeal membrane oxygenation: Avalon© cannula in childhood disease.
        Perfusion. 2015; 30: 182-186
        • Cavayas Y.A.
        • Sampson C.
        • Yusuff H.
        • et al.
        Use of a tracheal dilator for percutaneous insertion of 27F and 31F Avalon(©) dual-lumen cannulae for veno-venous extracorporeal membrane oxygenation in adults.
        Perfusion. 2018; 33: 509-511
        • Fleet D.
        • Morris I.
        • Faulkner G.
        • et al.
        Experience with the Crescent(®) cannula for adult respiratory VV ECMO: a case series.
        Perfusion. 2021; Ahead of print (2676591211031462)
        • Muhammad J.
        • Rezaeimoghaddam M.
        • Cakmak B.
        • et al.
        Patient-specific atrial hemodynamics of a double lumen neonatal cannula in Correct caval position.
        Artif Organs. 2018; 42: 401-409
        • Lazar D.A.
        • Cass D.L.
        • Olutoye O.O.
        • et al.
        Venovenous cannulation for extracorporeal membrane oxygenation using a bicaval dual-lumen catheter in neonates.
        J Pediatr Surg. 2012; 47: 430-434
        • Speggiorin S.
        • Robinson S.G.
        • Harvey C.
        • et al.
        Experience with the Avalon® bicaval double-lumen veno-venous cannula for neonatal respiratory ECMO.
        Perfusion. 2015; 30: 250-254
        • Lillie J.
        • Pienaar A.
        • Budd J.
        • et al.
        Multisite veno-venous cannulation for neonates and Nonambulatory children.
        Pediatr Crit Care Med. 2021; 22: 692-700
        • Barton R.
        • Ignjatovic V.
        • Monagle P.
        Anticoagulation during ECMO in neonatal and paediatric patients.
        Thromb Res. 2019; 173: 172-177
        • Wong T.E.
        • Huang Y.S.
        • Weiser J.
        • et al.
        Antithrombin concentrate use in children: a multicenter cohort study.
        J Pediatr. 2013; 163: 1329-13234.e1
        • Rama G.
        • Middlesworth W.
        • Neunert C.
        • et al.
        Antifactor Xa monitoring and Hematologic complications of pediatric extracorporeal membrane oxygenation.
        Asaio j. 2021; 67: 91-95
        • Padhya D.R.
        • Prutsky G.J.
        • Nemergut M.E.
        • et al.
        Routine laboratory measures of heparin anticoagulation for children on extracorporeal membrane oxygenation: systematic review and meta-analysis.
        Thromb Res. 2019; 179: 132-139
        • Sanfilippo F.
        • Asmussen S.
        • Maybauer D.
        • et al.
        Bivalirudin for alternative anticoagulation in extracorporeal membrane oxygenation: a systematic review.
        J Intensive Care Med. 2017; 32: 312-319
        • Kaseer H.
        • Soto M.
        • Sanghavi D.
        • et al.
        Heparin vs bivalirudin anticoagulation for extracorporeal membrane oxygenation.
        J Card Surg. 2020; 35: 779-786
        • Hamzah M.
        • Jarden A.M.
        • Ezetendu C.
        • et al.
        Evaluation of bivalirudin as an alternative to heparin for systemic anticoagulation in pediatric extracorporeal membrane oxygenation.
        Pediatr Crit Care Med. 2020; 21: 827-834
        • Ranucci M.
        Bivalirudin and post-cardiotomy ECMO: a word of caution.
        Crit Care. 2012; 16: 427
        • Nagle E.L.
        • Dager W.E.
        • Duby J.J.
        • et al.
        Bivalirudin in pediatric patients maintained on extracorporeal life support.
        Pediatr Crit Care Med. 2013; 14: e182-e188
        • Seelhammer T.G.
        • Bohman J.K.
        • Schulte P.J.
        • et al.
        Comparison of bivalirudin versus heparin for maintenance systemic anticoagulation during adult and pediatric extracorporeal membrane oxygenation.
        Crit Care Med. 2021; 49: 1481-1492
        • Snyder C.W.
        • Goldenberg N.A.
        • Nguyen A.T.
        • et al.
        A perioperative bivalirudin anticoagulation protocol for neonates with congenital diaphragmatic hernia on extracorporeal membrane oxygenation.
        Thromb Res. 2020; 193: 198-203
        • Brisbois E.J.
        • Handa H.
        • Major T.C.
        • et al.
        Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer.
        Biomaterials. 2013; 34: 6957-6966
        • Major T.C.
        • Brant D.O.
        • Reynolds M.M.
        • et al.
        The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer.
        Biomaterials. 2010; 31: 2736-2745
        • Wo Y.
        • Brisbois E.J.
        • Colletta A.
        • et al.
        Origin of long-term Storage stability and nitric oxide release behavior of CarboSil polymer doped with S-nitroso-N-acetyl-D-penicillamine.
        ACS Appl Mater Inter. 2015; 7: 22218-22227
        • Bellomo T.R.
        • Jeakle M.A.
        • Meyerhoff M.E.
        • et al.
        The effects of the combined argatroban/nitric oxide-releasing polymer on platelet Microparticle-induced Thrombogenicity in coated extracorporeal circuits.
        Asaio j. 2021; 67: 573-582
        • Major T.C.
        • Brisbois E.J.
        • Jones A.M.
        • et al.
        The effect of a polyurethane coating incorporating both a thrombin inhibitor and nitric oxide on hemocompatibility in extracorporeal circulation.
        Biomaterials. 2014; 35: 7271-7285
        • Wild K.T.
        • Hedrick H.L.
        • Rintoul N.E.
        Reconsidering ECMO in premature neonates.
        Fetal Diagn Ther. 2020; 47: 927-932
        • Burgos C.M.
        • Frenckner B.
        • Broman L.M.
        Premature and extracorporeal life support: is it time? A Systematic review.
        ASAIO J. 2021; 68: 633-645
        • Rozmiarek A.J.
        • Qureshi F.G.
        • Cassidy L.
        • et al.
        How low can you go? Effectiveness and safety of extracorporeal membrane oxygenation in low-birth-weight neonates.
        J Pediatr Surg. 2004; 39: 845-847
        • Gadepalli S.K.
        • Hirschl R.B.
        Extracorporeal life support: updates and controversies.
        Semin Pediatr Surg. 2015; 24: 8-11
        • Ely D.M.
        • Driscoll A.K.
        Infant mortality in the United States, 2019:data from the period Linked birth/infant death file.
        Natl Vital Stat Rep. 2021; 70: 1-18
        • Dreyfuss D.
        • Saumon G.
        Ventilator-induced lung injury: lessons from experimental studies.
        Am J Respir Crit Care Med. 1998; 157: 294-323
        • Biondi J.W.
        • Schulman D.S.
        • Soufer R.
        • et al.
        The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction.
        Anesth Analg. 1988; 67: 144-151
        • Aly H.
        • Hammad T.A.
        • Essers J.
        • et al.
        Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants?.
        Brain Dev. 2012; 34: 201-205
        • Cayabyab R.
        • Ramanathan R.
        Retinopathy of prematurity: Therapeutic strategies based on Pathophysiology.
        Neonatology. 2016; 109: 369-376
        • Fischer H.S.
        • Bührer C.
        Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis.
        Pediatrics. 2013; 132: e1351-e1360
        • Schmölzer G.M.
        • Kumar M.
        • Pichler G.
        • et al.
        Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis.
        Bmj. 2013; 347: f5980
        • Subramaniam P.
        • Ho J.J.
        • Davis P.G.
        Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants.
        Cochrane Database Syst Rev. 2016; : Cd001243
        • Lemyre B.
        • Laughon M.
        • Bose C.
        • et al.
        Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants.
        Cochrane Database Syst Rev. 2016; 12: Cd005384
      1. Supplemental Therapeutic oxygen for Prethreshold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes.
        Pediatrics. 2000; 105: 295-310
        • Carlo W.A.
        • Stark A.R.
        • Wright L.L.
        • et al.
        Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants.
        J Pediatr. 2002; 141: 370-374
        • Mariani G.
        • Cifuentes J.
        • Carlo W.A.
        Randomized trial of permissive hypercapnia in preterm infants.
        Pediatrics. 1999; 104: 1082-1088
        • Woodgate P.G.
        • Davies M.W.
        Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants.
        Cochrane Database Syst Rev. 2001; 2001: Cd002061
        • Robbins M.
        • Trittmann J.
        • Martin E.
        • et al.
        Early extubation attempts reduce length of stay in extremely preterm infants even if re-intubation is necessary.
        J Neonatal Perinatal Med. 2015; 8: 91-97
        • Al Faleh K.
        • Liew K.
        • Anabrees K.
        • et al.
        Success rate and neonatal morbidities associated with early extubation in extremely low birth weight infants.
        Ann Saudi Med. 2011; 31: 577-580
        • Askie L.M.
        • Darlow B.A.
        • Davis P.G.
        • et al.
        Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants.
        Cochrane Database Syst Rev. 2017; 4: Cd011190
        • Askie L.M.
        • Darlow B.A.
        • Finer N.
        • et al.
        Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration.
        Jama. 2018; 319: 2190-2201
        • Manja V.
        • Saugstad O.D.
        • Lakshminrusimha S.
        Oxygen saturation targets in preterm infants and outcomes at 18-24 Months: a systematic review.
        Pediatrics. 2017; 139
        • Klingenberg C.
        • Wheeler K.I.
        • McCallion N.
        • et al.
        Volume-targeted versus pressure-limited ventilation in neonates.
        Cochrane Database Syst Rev. 2017; 10: Cd003666
        • Cools F.
        • Askie L.M.
        • Offringa M.
        • et al.
        Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data.
        Lancet. 2010; 375: 2082-2091
        • Cools F.
        • Offringa M.
        • Askie L.M.
        Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants.
        Cochrane Database Syst Rev. 2015; : Cd000104
        • Zapol W.M.
        • Kolobow T.
        • Pierce G.G.
        • et al.
        Artificial placenta: two days of total extrauterine support of the isolated premature lamb fetus.
        Science. 1969; 166: 617-618
        • Ivascu F.A.
        • Somand D.M.
        • Skrzypchak A.M.
        • et al.
        Development of an artificial placenta: CO2 elimination and hemodynamics as a function of arteriovenous blood flow.
        J Pediatr Surg. 2005; 40: 1034-1037
        • Reoma J.
        • Rojas A.
        • Kim A.C.
        • et al.
        Development of an artificial placenta I: pumpless arterio-venous extracorporeal life support in a neonatal sheep model.
        J Pediatr Surg. 2009; 44: 53-59
        • Hornick M.A.
        • Davey M.G.
        • Partridge E.A.
        • et al.
        Umbilical cannulation optimizes circuit flows in premature lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND).
        J Physiol. 2018; 596: 1575-1585
        • Ozawa K.
        • Davey M.G.
        • Tian Z.
        • et al.
        Fetal echocardiographic assessment of cardiovascular impact of prolonged support on EXTrauterine Environment for Neonatal Development (EXTEND) system.
        Ultrasound Obstet Gynecol. 2020; 55: 516-522
        • Partridge E.A.
        • Davey M.G.
        • Hornick M.A.
        • et al.
        An Extrauterine environment for neonatal development: Extending fetal physiology beyond the womb.
        Semin Fetal Neonatal Med. 2017;
        • Miura Y.
        • Matsuda T.
        • Funakubo A.
        • et al.
        Novel modification of an artificial placenta: pumpless arteriovenous extracorporeal life support in a premature lamb model.
        Pediatr Res. 2012; 72: 490-494
        • Miura Y.
        • Matsuda T.
        • Usuda H.
        • et al.
        A Parallelized pumpless artificial placenta system significantly prolonged survival time in a preterm lamb model.
        Artif Organs. 2016; 40: E61-E68
        • Miura Y.
        • Usuda H.
        • Watanabe S.
        • et al.
        Stable control of physiological parameters, but not infection, in preterm lambs maintained on ex vivo uterine environment therapy.
        Artif Organs. 2017; 41: 959-968
        • Usuda H.
        • Watanabe S.
        • Miura Y.
        • et al.
        Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week.
        Am J Obstet Gynecol. 2017; 217: 457.e1-457.e13
        • White J.J.
        • Andrews H.G.
        • Risemberg H.
        • et al.
        Prolonged respiratory support in newborn infants with a membrane oxygenator.
        Surgery. 1971; 70: 288-296
        • Kato J.
        • Nagaya M.
        • Niimi N.
        • et al.
        Venovenous extracorporeal membrane oxygenation in newborn infants using the umbilical vein as a reinfusion route.
        J Pediatr Surg. 1998; 33: 1446-1448
        • Gray B.W.
        • Sabbagh A.
        • Rojas A.
        • et al.
        Development of an artificial placenta IV: 24 hour venovenous extracorporeal life support in premature lambs.
        Asaio j. 2012; 58: 148-154
        • Gray B.W.
        • Sabbagh A.
        • Zakem S.J.
        • et al.
        Development of an artificial placenta V: 70 h veno-venous extracorporeal life support after ventilatory failure in premature lambs.
        J Pediatr Surg. 2013; 48: 145-153
        • Partridge E.A.
        • Davey M.G.
        • Hornick M.A.
        • et al.
        An extra-uterine system to physiologically support the extreme premature lamb.
        Nat Commun. 2017; 8: 15112
        • Church J.T.
        • Perkins E.M.
        • Coughlin M.A.
        • et al.
        Perfluorocarbons prevent lung injury and Promote development during artificial placenta support in extremely premature lambs.
        Neonatology. 2018; 113: 313-321
        • Coughlin M.A.
        • Werner N.L.
        • Church J.T.
        • et al.
        An artificial placenta protects against lung injury and promotes continued lung development in extremely premature lambs.
        ASAIO J. 2018; 65: 690-697
        • Mychaliska G.
        • Bryner B.
        • Dechert R.
        • et al.
        Safety and efficacy of perflubron-induced lung growth in neonates with congenital diaphragmatic hernia: Results of a prospective randomized trial.
        J Pediatr Surg. 2015; 50: 1083-1087
        • Hirschl R.B.
        Current experience with liquid ventilation.
        Paediatr Respir Rev. 2004; 5: S339-S345
        • Peng J.
        • Rochow N.
        • Dabaghi M.
        • et al.
        Postnatal dilatation of umbilical cord vessels and its impact on wall integrity: Prerequisite for the artificial placenta.
        Int J Artif Organs. 2018; 41: 393-399
        • Zwischenberger J.B.
        • Toomasian J.M.
        • Drake K.
        • et al.
        Total respiratory support with single cannula venovenous ECMO: double lumen continuous flow vs. single lumen tidal flow.
        Trans Am Soc Artif Intern Organs. 1985; 31: 610-615
        • Kading J.C.
        • Langley M.W.
        • Lautner G.
        • et al.
        Tidal flow perfusion for the artificial placenta: a paradigm shift.
        ASAIO J. 2019; 66: 796-802
        • Bertholdt C.
        • Menard S.
        • Delorme P.
        • et al.
        Intraoperative adverse events associated with extremely preterm cesarean deliveries.
        Acta Obstet Gynecol Scand. 2018; 97: 608-614
        • McLeod J.S.
        • Menon Anitha
        • Matsuko Niki
        • et al.
        Comparing mortality risk models in VLBW and preterm infants: systematic review and meta-analysis.
        J Perinatol. 2020; 40: 695-703
        • Sotodate G.
        • Oyama K.
        • Matsumoto A.
        • et al.
        Predictive ability of neonatal illness severity scores for early death in extremely premature infants.
        J Matern Fetal Neonatal Med. 2022; 35: 846-851
        • De Bie F.R.
        • Davey M.G.
        • Larson A.C.
        • et al.
        Artificial placenta and womb technology: past, current, and future challenges towards clinical translation.
        Prenatal Diagn. 2021; 41: p145-p158https://doi.org/10.1002/pd.5821