Advertisement
Review Article| Volume 49, ISSUE 4, P811-820, December 2022

Molecular and Cellular In Utero Therapy

  • Cara L. Berkowitz
    Affiliations
    Division of Pediatric General, Thoracic and Fetal Surgery, Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • Valerie L. Luks
    Affiliations
    Division of Pediatric General, Thoracic and Fetal Surgery, Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • Marcelina Puc
    Affiliations
    Division of Pediatric General, Thoracic and Fetal Surgery, Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • William H. Peranteau
    Correspondence
    Corresponding author. Division of Pediatric General, Thoracic, and Fetal Surgery, Leonard and Madlyn Abramson Pediatric Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Affiliations
    Division of Pediatric General, Thoracic and Fetal Surgery, Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
Published:October 09, 2022DOI:https://doi.org/10.1016/j.clp.2022.06.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Peranteau W.
        • Flake A.
        The future of in utero gene therapy.
        Mol Diagn Ther. 2020; 24: 135-142
        • Serr D.
        • Sachs L.
        • Danon M.
        The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report).
        Bull Res Counc Isr. 1955; 5B: 137-138
        • Jelin A.
        • Sagaser K.
        • Wilkins-Haug L.
        Prenatal genetic testing options.
        Pediatr Clin North Am. 2019; 66: 281-293
        • Alfirevic Z.
        • Navaratnam K.
        • Mujezinovic F.
        Amniocentesis and chorionic villus sampling for prenatal diagnosis.
        Cochrane Database Syst Rev. 2017; 9: CD003252
        • Mellis R.
        • Chandler N.
        • Chitty L.
        Next-generation sequencing and the impact on prenatal diagnosis.
        Expert Rev Mol Diagn. 2018; 18: 689-699
        • Lo Y.
        • Corbetta N.
        • Chamberlain P.
        • et al.
        Presence of fetal DNA in maternal plasma and serum.
        Lancet (London, England). 1997; 350: 485-487
        • Carlson L.
        • Vora N.
        Prenatal diagnosis: screening and diagnostic tools.
        Obstet Gynecol Clin North Am. 2017; 44: 245-256
        • Scotchman E.
        • Shaw J.
        • Paternoster B.
        • et al.
        Non-invasive prenatal diagnosis and screening for monogenic disorders.
        Eur J Obstet Gynecol Reprod Biol. 2020; 253: 320-327
        • Witt R.
        • MacKenzie T.
        • Peranteau W.
        Fetal stem cell and gene therapy.
        Semin Fetal Neonatal Med. 2017; 22: 410-414
        • Endo M.
        • Henriques-Coelho T.
        • Zoltick P.W.
        • et al.
        The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors.
        Gene Ther. 2009; 17: 61-71
        • Karda R.
        • Buckley S.
        • Mattar C.
        • et al.
        Perinatal systemic gene delivery using adeno-associated viral vectors.
        Front Mol Neurosci. 2014; 0: 89
        • Waddington S.
        • Kramer M.
        • Hernandez-Alcoceba R.
        • et al.
        In utero gene therapy: current challenges and perspectives.
        Mol Ther. 2005; 11: 661-676
        • Massaro G.
        • Mattar C.
        • Wong A.
        • et al.
        Fetal gene therapy for neurodegenerative disease of infants.
        Nat Med. 2018; 24: 1317-1323
        • Flake A.
        • Roncarolo M.
        • Puck J.
        • et al.
        Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow.
        N Engl J Med. 1996; 335: 1806-1810
        • Kim H.
        • Shaaban A.
        • Milner R.
        • et al.
        In utero bone marrow transplantation induces donor-specific tolerance by a combination of clonal deletion and clonal anergy.
        J Pediatr Surg. 1999; 34: 726-729
        • Peranteau W.
        • Hayashi S.
        • Hsieh M.
        • et al.
        High-level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation.
        Blood. 2002; 100: 2225-2234
        • Flake A.W.
        • Harrison M.R.
        • Adzick N.S.
        • Zanjani E.D.
        Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras.
        Science. 1986 Aug 15; 233 (PMID: 2874611): 776-778https://doi.org/10.1126/science.2874611
        • Calcedo R.
        • Morizono H.
        • Wang L.
        • et al.
        Adeno-associated virus antibody profiles in newborns, children, and adolescents.
        Clin Vaccin Immunol. 2011; 18: 1586-1588
        • Charlesworth C.
        • Deshpande P.
        • Dever D.
        • et al.
        Identification of preexisting adaptive immunity to Cas9 proteins in humans.
        Nat Med. 2019; 25: 249-254
        • Simister N.
        Placental transport of immunoglobulin G.
        Vaccine. 2003; 21: 3365-3369
        • Basner-Tschakarjan E.
        • Bijjiga E.
        • Martino A.
        Pre-clinical assessment of immune responses to adeno-associated virus (AAV) vectors.
        Front Immunol. 2014; 5: 28
        • Moss R.
        • Milla C.
        • Colombo J.
        • et al.
        Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial.
        Hum Gene Ther. 2007; 18: 726-732
        • Tran N.
        • Porada C.
        • Almeida-Porada G.
        • et al.
        Induction of stable prenatal tolerance to beta-galactosidase by in utero gene transfer into preimmune sheep fetuses.
        Blood. 2001; 97: 3417-3423
        • Davey M.
        • Riley J.
        • Andrews A.
        • et al.
        Induction of immune tolerance to foreign protein via adeno-associated viral vector gene transfer in mid-gestation fetal sheep.
        PLoS One. 2017; 12: e0171132
        • Sabatino D.
        • Mackenzie T.
        • Peranteau W.
        • et al.
        Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice.
        Mol Ther. 2007; 15: 1677-1685
        • Rashnonejad A.
        • Amini Chermahini G.
        • Gündüz C.
        • et al.
        Fetal gene therapy using a single injection of recombinant AAV9 rescued SMA phenotype in mice.
        Mol Ther. 2019; 27: 2123-2133
        • Bak R.
        • Gomez-Ospina N.
        • Porteus M.
        Gene editing on center stage.
        Trends Genet. 2018; 34: 600-611
        • Doudna J.
        • Charpentier E.
        Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
        Science. 2014; 346: 1258096
        • Kim D.
        • Lim K.
        • Kim S.
        • et al.
        Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
        Nat Biotechnol. 2017; 35: 475-480
        • Gaudelli N.
        • Komor A.
        • Rees H.
        • et al.
        Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
        Nature. 2017; 551
        • Anzalone A.
        • Randolph P.
        • Davis J.
        • et al.
        Search-and-replace genome editing without double-strand breaks or donor DNA.
        Nature. 2019; 576: 149-157
        • Alapati D.
        • Zacharias W.J.
        • Hartman H.A.
        • Rossidis A.C.
        • Stratigis J.D.
        • Ahn N.J.
        • Coons B.
        • Zhou S.
        • Li H.
        • Singh K.
        • Katzen J.
        • Tomer Y.
        • Chadwick A.C.
        • Musunuru K.
        • Beers M.F.
        • Morrisey E.E.
        • Peranteau W.H.
        In utero gene editing for monogenic lung disease.
        Sci Transl Med. 2019 Apr 17; 11 (PMID: 30996081; PMCID: PMC6822403): eaav8375https://doi.org/10.1126/scitranslmed.aav8375
        • Rossidis A.C.
        • Stratigis J.D.
        • Chadwick A.C.
        • et al.
        In Utero CRISPR-mediated therapeutic editing of metabolic genes.
        Nat Med. 2018; 24: 1513-1518
        • Bose S.K.
        • White B.M.
        • Kashyap M.V.
        • et al.
        In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease.
        Nat Commun. 2021; 12: 1-16
        • Bulcha J.
        • Wang Y.
        • Ma H.
        • et al.
        Viral vector platforms within the gene therapy landscape.
        Signal Transduction Targeted Ther. 2021; 6: 1-24
        • Morille M.
        • Passirani C.
        • Vonarbourg A.
        • et al.
        Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.
        Biomaterials. 2008; 29: 3477-3496
        • Zu H.
        • Gao D.
        Non-viral vectors in gene therapy: recent development, challenges, and prospects.
        AAPS J. 2021; 23: 78
        • Schuh R.S.
        • Poletto E.
        • Fachel F.N.S.
        • et al.
        Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: implications for CRISPR/Cas technology.
        J Colloid Interface Sci. 2018; 530: 243-255
        • Ricciardi A.
        • Bahal R.
        • Farrelly J.
        • et al.
        In Utero nanoparticle delivery for site-specific genome editing.
        Nat Commun. 2018; 9: 1-11
        • Peddi N.
        • Ramesh H.
        • Gude S.
        • et al.
        Intrauterine fetal gene therapy: is that the future and is that future now?.
        Cureus. 2022; 14: e22521
        • Hu S.
        • Yang T.
        • Wang Y.
        Widespread labeling and genomic editing of the fetal central nervous system by in utero CRISPR AAV9-PHP.eB administration.
        Development. 2021; 148: dev195586
        • Neufeld E.
        Enzyme replacement therapy – a brief history.
        in: Atul Mehta Michael Beck Gere Sunder-Plassmann Fabry disease: perspectives from 5 years of FOS. Oxford PharmaGenesis, Oxford2006
        • Ries M.
        Enzyme replacement therapy and beyond-in memoriam Roscoe O. Brady, M.D. (1923-2016).
        J Inherit Metab Dis. 2017; 40: 343-356
        • ClinicalTrials.gov
        In utero enzyme replacement therapy for lysosomal storage diseases - identifier: NCT04532047 national library of medicine (US).
        (Available at:) (Accessed June 3, 2022)
        • ClinicalTrials.gov
        Intraamniotic administrations of ER004 to male subjects with X-linked hypohidrotic ectodermal dysplasia- identifier: NCT04980638.
        National Library of Medicine (US), 2021 (Available at:) (Accessed June 3, 2022)
        • Schneider H.
        • Faschingbauer F.
        • Schuepbach-Mallepell S.
        • et al.
        Prenatal correction of X-Linked hypohidrotic ectodermal dysplasia.
        . 2018; 378: 1604-1610https://doi.org/10.1056/NEJMoa1714322
        • Peranteau W.
        In utero hematopoietic cell transplantation: induction of donor specific immune tolerance and postnatal transplants.
        Front Pharmacol. 2014; 5: 251
        • Fischer A.
        Severe combined immunodeficiencies.
        Immunodefic Rev. 1992; 3: 83-100
        • Mackenzie T.
        • Frascoli M.
        • Sper R.
        • et al.
        In utero stem cell transplantation in patients with alpha thalassemia major: interim results of a phase 1 clinical trial | request PDF.
        Blood. 2022; 136: 1
        • Hobbs J.
        • Hugh-Jones K.
        • Barrett A.
        • et al.
        Reversal of clinical features of Hurler's disease and biochemical improvement after treatment by bone-marrow transplantation.
        Lancet. 1981; 2: 709-712
        • Fratantoni J.
        • Hall C.
        • Neufeld E.
        Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts.
        Science. 1968; 162: 570-572
        • Tanaka A.
        • Okuyama T.
        • Suzuki Y.
        • et al.
        Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan.
        Mol Genet Metab. 2012; 107: 513-520
        • Rowe D.
        Osteogenesis imperfecta.
        3rd edition. Elsevier, Amsterdam2008
        • ClinicalTrials.gov
        Boost brittle bones before birth - identifier: NCT03706482 national library of medicine (US).
        (Available at:) (Accessed June 3, 2022)
        • ClinicalTrials.gov
        Cellular therapy for in utero repair of myelomeningocele - the CuRe trial - identifier: NCT04652908 national library of medicine (US).
        (Available at:) (Accessed June 3, 2022)
        • Wang A.
        • Brown E.
        • Lankford L.
        • et al.
        Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele.
        Stem Cells Translational Med. 2015; 4: 659-669
        • Almeida-Porada G.
        • Waddington S.
        • Chan J.
        • et al.
        In utero gene therapy consensus statement from the IFeTIS.
        Mol Ther. 2019; 27: 705-707
        • Zwiers C.
        • Lindenburg I.
        • Klumper F.
        • et al.
        Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures.
        Ultrasound Obstet Gynecol. 2017; 50: 180-186