Advertisement
Review Article| Volume 49, ISSUE 4, P835-848, December 2022

Fetal Repair of Neural Tube Defects

Published:October 09, 2022DOI:https://doi.org/10.1016/j.clp.2022.06.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adzick N.S.
        • Thom E.A.
        • Spong C.Y.
        • et al.
        A randomized trial of prenatal versus postnatal repair of myelomeningocele.
        N Engl J Med. 2011; 364: 993-1004
        • Centers for Disease Control and Prevention (CDC)
        Spina bifida and anencephaly before and after folic acid mandate--United States, 1995-1996 and 1999-2000.
        MMWR Morb Mortal Wkly Rep. 2004; 53: 362-365
        • Centers for Disease Control and Prevention (CDC)
        Racial/ethnic differences in the birth prevalence of spina bifida - United States, 1995-2005.
        MMWR Morb Mortal Wkly Rep. 2009; 57: 1409-1413
        • Zaganjor I.
        • Sekkarie A.
        • Tsang B.L.
        • et al.
        Describing the prevalence of neural tube defects Worldwide: a systematic literature review.
        PLOS ONE. 2016; 11e0151586
        • Parker S.E.
        • Mai C.T.
        • Canfield M.A.
        • et al.
        Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006.
        Birth Defects Res A Clin Mol Teratol. 2010; 88: 1008-1016
        • Bakker M.K.
        • Kancherla V.
        • Canfield M.A.
        • et al.
        Analysis of mortality among Neonates and children with spina bifida: an International Registry-Based study, 2001-2012.
        Paediatr Perinat Epidemiol. 2019; 33: 436-448
        • Johnson C.Y.
        • Honein M.A.
        • Dana Flanders W.
        • et al.
        Pregnancy termination following prenatal diagnosis of anencephaly or spina bifida: a systematic review of the literature.
        Birth Defects Res A Clin Mol Teratol. 2012; 94: 857-863
        • Sival D.A.
        • van Weerden T.W.
        • Vles J.S.H.
        • et al.
        Neonatal loss of motor function in human spina bifida aperta.
        Pediatrics. 2004; 114: 427-434
        • Stiefel D.
        • Meuli M.
        Scanning electron microscopy of fetal murine myelomeningocele reveals growth and development of the spinal cord in early gestation and neural tissue destruction around birth.
        J Pediatr Surg. 2007; 42: 1561-1565
        • Lupo P.J.
        • Agopian A.J.
        • Castillo H.
        • et al.
        Genetic epidemiology of neural tube defects.
        J Pediatr Rehabil Med. 2017; 10: 189-194
        • Kennedy D.
        • Chitayat D.
        • Winsor E.J.
        • et al.
        Prenatally diagnosed neural tube defects: ultrasound, chromosome, and autopsy or postnatal findings in 212 cases.
        Am J Med Genet. 1998; 77: 317-321
        • Partington M.D.
        • McLone D.G.
        Hereditary factors in the Etiology of neural tube defects.
        PNE. 1995; 23: 311-316
        • Shaer C.M.
        • Chescheir N.
        • Schulkin J.
        Myelomeningocele: a review of the epidemiology, genetics, risk factors for conception, prenatal diagnosis, and Prognosis for affected Individuals.
        Obstetrical Gynecol Surv. 2007; 62: 471-479
        • Shaw G.M.
        • Todoroff K.
        • Finnell R.H.
        • et al.
        Spina bifida phenotypes in infants or fetuses of obese mothers.
        Teratology. 2000; 61 (200005)61:5<376::AID-TERA9>3.0.CO;2): 376-381
        • Watkins M.L.
        • Rasmussen S.A.
        • Honein M.A.
        • et al.
        Maternal obesity and risk for birth defects.
        Pediatrics. 2003; 111: 1152-1158
        • Stothard K.J.
        • Tennant P.W.G.
        • Bell R.
        • et al.
        Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis.
        JAMA. 2009; 301: 636-650
        • Donnan J.
        • Walsh S.
        • Sikora L.
        • et al.
        A systematic review of the risks factors associated with the onset and natural progression of spina bifida.
        Neurotoxicology. 2017; 61: 20-31
        • Agopian A.J.
        • Tinker S.C.
        • Lupo P.J.
        • et al.
        Proportion of neural tube defects attributable to known risk factors.
        Birth Defects Res A Clin Mol Teratol. 2013; 97: 42-46
        • Sivarajah K.
        • Relph S.
        • Sabaratnam R.
        • et al.
        Spina bifida in pregnancy: a review of the evidence for preconception, antenatal, intrapartum and postpartum care.
        Obstet Med. 2019; 12: 14-21https://doi.org/10.1177/1753495X18769221
        • Sepulveda W.
        • Wong A.E.
        • Sepulveda F.
        • et al.
        Prenatal diagnosis of spina bifida: from intracranial translucency to intrauterine surgery.
        Childs Nerv Syst. 2017; 33: 1083-1099
        • Chen F.C.K.
        • Gerhardt J.
        • Entezami M.
        • et al.
        Detection of spina bifida by first trimester screening - results of the Prospective Multicenter Berlin IT-study.
        Ultraschall Med. 2017; 38: 151-157
        • Practice Bulletin No. 187
        Neural tube defects.
        Obstet Gynecol. 2017; 130: e279-e290
        • Norem C.T.
        • Schoen E.J.
        • Walton D.L.
        • et al.
        Routine ultrasonography compared with maternal serum alpha-fetoprotein for neural tube defect screening.
        Obstet Gynecol. 2005; 106: 747-752
        • Loft A.G.
        • Høgdall E.
        • Larsen S.O.
        • et al.
        A comparison of amniotic fluid alpha-fetoprotein and acetylcholinesterase in the prenatal diagnosis of open neural tube defects and anterior abdominal wall defects.
        Prenat Diagn. 1993; 13: 93-109
        • Cohen A.R.
        • Couto J.
        • Cummings J.J.
        • et al.
        Position statement on fetal myelomeningocele repair.
        Am J Obstet Gynecol. 2014; 210: 107-111
        • Mazzone L.
        • Moehrlen U.
        • Casanova B.
        • et al.
        Open spina bifida: Why not fetal surgery?.
        FDT. 2019; 45: 430-434
        • Chao T.T.
        • Dashe J.S.
        • Adams R.C.
        • et al.
        Fetal spine findings on MRI and associated outcomes in children with open neural tube defects.
        Am J Roentgenology. 2011; 197: W956-W961
        • Johnson M.P.
        • Bennett K.A.
        • Rand L.
        • et al.
        MOMS: obstetrical outcomes and risk factors for obstetrical complications following prenatal surgery.
        Am J Obstet Gynecol. 2016; 215: 778.e1-778.e9
        • Licci M.
        • Guzman R.
        • Soleman J.
        Maternal and obstetric complications in fetal surgery for prenatal myelomeningocele repair: a systematic review.
        Neurosurg Focus. 2019; 47: E11
        • Wilson R.D.
        • Lemerand K.
        • Johnson M.P.
        • et al.
        Reproductive outcomes in subsequent pregnancies after a pregnancy complicated by open maternal-fetal surgery (1996–2007).
        Am J Obstet Gynecol. 2010; 203: 209.e1-209.e6
        • Moldenhauer J.S.
        • Flake A.W.
        Open fetal surgery for neural tube defects.
        Best Pract Res Clin Obstet Gynaecol. 2019; 58: 121-132
        • Rintoul N.E.
        • Sutton L.N.
        • Hubbard A.M.
        • et al.
        A New Look at myelomeningoceles: functional level, vertebral level, shunting, and the Implications for fetal intervention.
        Pediatrics. 2002; 109: 409-413
        • Norkett W.
        • McLone D.G.
        • Bowman R.
        Current management Strategies of Hydrocephalus in the child with open spina bifida.
        Top Spinal Cord Inj Rehabil. 2016; 22: 241-246
        • Messing-Jünger M.
        • Röhrig A.
        Primary and secondary management of the Chiari II malformation in children with myelomeningocele.
        Childs Nerv Syst. 2013; 29: 1553-1562
        • Talamonti G.
        • Marcati E.
        • Mastino L.
        • et al.
        Surgical management of Chiari malformation type II.
        Childs Nerv Syst. 2020; 36: 1621-1634
        • Oakeshott P.
        • Hunt G.M.
        • Poulton A.
        • et al.
        Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study.
        Dev Med Child Neurol. 2010; 52: 749-753
        • Snow-Lisy D.C.
        • Yerkes E.B.
        • Cheng E.Y.
        Update on urological management of spina bifida from prenatal diagnosis to Adulthood.
        J Urol. 2015; 194: 288-296
        • Rocque B.G.
        • Bishop E.R.
        • Scogin M.A.
        • et al.
        Assessing health-related quality of life in children with spina bifida.
        J Neurosurg Pediatr. 2015; 15: 144-149
        • Beierwaltes P.
        • Church P.
        • Gordon T.
        • et al.
        Bowel function and care: Guidelines for the care of people with spina bifida.
        J Pediatr Rehabil Med. 2020; 13: 491-498
        • Velde S.V.
        • Biervliet S.V.
        • Bruyne R.D.
        • et al.
        A systematic review on bowel management and the success rate of the various treatment modalities in spina bifida patients.
        Spinal Cord. 2013; 51: 873-881
        • Swaroop V.T.
        • Dias L.
        Orthopaedic management of spina bifida—part II: foot and ankle deformities.
        J Child Orthop. 2011; 5: 403-414
        • Bradko V.
        • Castillo H.
        • Fremion E.
        • et al.
        What is the Role of scoliosis surgery in Adolescents and Adults with myelomeningocele? A systematic review.
        Clin Orthopaedics Relat Research®. 2022; https://doi.org/10.1097/CORR.0000000000002087
        • Ho P.
        • Quigley M.A.
        • Tatwavedi D.
        • et al.
        Neonatal and infant mortality associated with spina bifida: a systematic review and meta-analysis.
        PLoS One. 2021; 16e0250098
        • Shin M.
        • Kucik J.E.
        • Siffel C.
        • et al.
        Improved survival among children with spina bifida in the United States.
        J Pediatr. 2012; 161: 1132-1137
        • Houtrow A.J.
        • Thom E.A.
        • Fletcher J.M.
        • et al.
        Prenatal repair of myelomeningocele and school-age functional outcomes.
        Pediatrics. 2020; 145e20191544
        • Farmer D.L.
        • Thom E.A.
        • Brock J.W.
        • et al.
        The Management of Myelomeningocele Study: full cohort 30-month pediatric outcomes.
        Am J Obstet Gynecol. 2018; 218: 256.e1-256.e13
        • Houtrow A.J.
        • MacPherson C.
        • Jackson-Coty J.
        • et al.
        Prenatal repair and physical functioning among children with myelomeningocele: a secondary analysis of a randomized clinical trial.
        JAMA Pediatr. 2021; 175e205674
        • Brock J.W.
        • Carr M.C.
        • Adzick N.S.
        • et al.
        Bladder function after fetal surgery for myelomeningocele.
        Pediatrics. 2015; 136: e906-e913
        • Brock J.W.
        • Thomas J.C.
        • Baskin L.S.
        • et al.
        Effect of prenatal repair of myelomeningocele on urological outcomes at school age.
        J Urol. 2019; 202: 812-818
        • Danzer E.
        • Thomas N.H.
        • Thomas A.
        • et al.
        Long-term neurofunctional outcome, executive functioning, and behavioral adaptive skills following fetal myelomeningocele surgery.
        Am J Obstet Gynecol. 2016; 214: 269.e1-269.e8
        • Araujo Júnior E.
        • Tonni G.
        • Martins W.P.
        Outcomes of infants followed-up at least 12 months after fetal open and endoscopic surgery for meningomyelocele: a systematic review and meta-analysis.
        J Evid Based Med. 2016; 9: 125-135
        • Joyeux L.
        • Engels A.C.
        • Russo F.M.
        • et al.
        Fetoscopic versus open repair for spina bifida aperta: a systematic review of outcomes.
        FDT. 2016; 39: 161-171
        • Kabagambe S.K.
        • Jensen G.W.
        • Chen Y.J.
        • et al.
        Fetal surgery for myelomeningocele: a systematic review and meta-analysis of outcomes in fetoscopic versus open repair.
        Fetal Diagn Ther. 2018; 43: 161-174
        • Araujo Júnior E.
        • Eggink A.J.
        • van den Dobbelsteen J.
        • et al.
        Procedure-related complications of open vs endoscopic fetal surgery for treatment of spina bifida in an era of intrauterine myelomeningocele repair: systematic review and meta-analysis.
        Ultrasound Obstet Gynecol. 2016; 48: 151-160
        • Cortes M.S.
        • Chmait R.H.
        • Lapa D.A.
        • et al.
        Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium.
        Am J Obstet Gynecol. 2021; 225: 678.e1-678.e11
        • Wang A.
        • Brown E.G.
        • Lankford L.
        • et al.
        Placental mesenchymal stromal cells Rescue ambulation in ovine myelomeningocele.
        Stem Cells Transl Med. 2015; 4: 659-669
        • Kabagambe S.
        • Keller B.
        • Becker J.
        • et al.
        Placental mesenchymal stromal cells seeded on clinical grade extracellular matrix improve ambulation in ovine myelomeningocele.
        J Pediatr Surg. 2017; (S0022-3468(17)30654-1)
        • Vanover M.
        • Pivetti C.
        • Lankford L.
        • et al.
        High density placental mesenchymal stromal cells provide neuronal preservation and improve motor function following in utero treatment of ovine myelomeningocele.
        J Pediatr Surg. 2019; 54: 75-79
        • Theodorou C.M.
        • Stokes S.C.
        • Jackson J.E.
        • et al.
        Efficacy of clinical-grade human placental mesenchymal stromal cells in fetal ovine myelomeningocele repair.
        J Pediatr Surg. 2021; (S0022-3468(21)00435-8)
        • Mann L.K.
        • Won J.H.
        • Patel R.
        • et al.
        Allografts for skin closure during in utero spina bifida repair in a sheep model.
        J Clin Med. 2021; 10: 4928
        • Dionigi B.
        • Brazzo J.A.
        • Ahmed A.
        • et al.
        Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida.
        J Pediatr Surg. 2015; 50: 1037-1041
        • Shieh H.F.
        • Tracy S.A.
        • Hong C.R.
        • et al.
        Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida.
        J Pediatr Surg. 2019; 54: 293-296
        • Aaronson O.S.
        • Tulipan N.B.
        • Cywes R.
        • et al.
        Robot-assisted endoscopic intrauterine myelomeningocele repair: a Feasibility study.
        PNE. 2002; 36: 85-89
        • Kohl T.
        • Hartlage M.G.
        • Kiehitz D.
        • et al.
        Percutaneous fetoscopic patch coverage of experimental lumbosacral full-thickness skin lesions in sheep.
        Surg Endosc. 2003; 17: 1218-1223
        • Knight C.G.
        • Lorincz A.
        • Johnson A.
        • et al.
        Robot-enhanced fetoscopic surgery.
        J Pediatr Surg. 2004; 39: 1463-1465