Advertisement
Review Article| Volume 49, ISSUE 3, P735-749, September 2022

Download started.

Ok

Imaging of Hypoxic-Ischemic Injury (in the Era of Cooling)

  • Judith A. Gadde
    Correspondence
    Corresponding author.
    Affiliations
    Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 9, Chicago, IL 60611, USA

    Medical Imaging Department

    Northwestern University Feinberg School of Medicine
    Search for articles by this author
  • Andrea C. Pardo
    Affiliations
    Ruth D. and Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 51, Chicago, IL 60611, USA
    Search for articles by this author
  • Corey S. Bregman
    Affiliations
    Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 9, Chicago, IL 60611, USA

    Medical Imaging Department

    Northwestern University Feinberg School of Medicine
    Search for articles by this author
  • Maura E. Ryan
    Affiliations
    Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 9, Chicago, IL 60611, USA

    Medical Imaging Department

    Northwestern University Feinberg School of Medicine
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moshiro R.
        • Mdoe P.
        • Perlman J.M.
        A global view of neonatal asphyxia and resuscitation.
        Front Pediatr. 2019; 7: 489
        • Hug L.
        • Alexander M.
        • You D.
        • et al.
        National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis.
        Lancet Glob Health. 2019; 7: e710-e720
        • Glass H.C.
        • Bonifacio S.L.
        • Peloquin S.
        • et al.
        Neurocritical care for neonates.
        Neurocrit Care. 2010; 12: 421-429
        • Glass H.C.
        • Ferriero D.M.
        • Rowitch D.H.
        • et al.
        The neurointensive nursery: concept, development, and insights gained.
        Curr Opin Pediatr. 2019; 31: 202-209
        • Oskoui M.
        • Coutinho F.
        • Dykeman J.
        • et al.
        An update on the prevalence of cerebral palsy: a systematic review and meta-analysis.
        Develop Med Child Neurol. 2013; 55: 509-519
        • Lee-Kelland R.
        • Jary S.
        • Tonks J.
        • et al.
        School-age outcomes of children without cerebral palsy cooled for neonatal hypoxic-ischaemic encephalopathy in 2008-2010.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 8-13
        • Vexler Z.S.
        • Ferriero D.M.
        Molecular and biochemical mechanisms of perinatal brain injury.
        Semin Neonatal. 2001; 6: 99-108
        • Hagberg H.
        • David Edwards A.
        • Groenendaal F.
        Perinatal brain damage: the term infant.
        Neurobiol Dis. 2016; 92: 102-112
        • ACOG
        Neonatal encephalopathy and neurologic outcome, second edition.
        Obstet Gynecol. 2014; 123: 896-901
        • Papile L.A.
        • et al.
        • Committee on F, Newborn
        Hypothermia and neonatal encephalopathy.
        Pediatrics. 2014; 133: 1146-1150
        • Azzopardi D.V.
        • Strohm B.
        • Edwards A.D.
        • et al.
        Moderate hypothermia to treat perinatal asphyxial encephalopathy.
        N Engl J Med. 2009; 361: 1349-1358
        • Shankaran S.
        • Laptook A.R.
        • Ehrenkranz R.A.
        • et al.
        Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.
        N Engl J Med. 2005; 353: 1574-1584
        • Jacobs S.E.
        • Berg M.
        • Hunt R.
        • et al.
        Cooling for newborns with hypoxic ischaemic encephalopathy.
        Cochrane Database Syst Rev. 2013; 1: CD003311
        • Davidson J.O.
        • Gonzalez F.
        • Gressens P.
        • et al.
        Update on mechanisms of the pathophysiology of neonatal encephalopathy.
        Semin Fetal Neonatal Med. 2021; 26: 101267
        • Christophe C.
        • Clercx A.
        • Blum D.
        • et al.
        Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants.
        Pediatr Radiol. 1994; 24: 581-584
        • Rutherford M.A.
        • Pennock J.M.
        • Dubowitz L.M.
        Cranial ultrasound and magnetic resonance imaging in hypoxic-ischaemic encephalopathy: a comparison with outcome.
        Develop Med Child Neurol. 1994; 36: 813-825
        • Rutherford M.A.
        • Pennock J.M.
        • Counsell S.J.
        • et al.
        Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy.
        Pediatrics. 1998; 102: 323-328
        • Kaufman S.A.
        • Miller S.P.
        • Ferriero D.M.
        • et al.
        Encephalopathy as a predictor of magnetic resonance imaging abnormalities in asphyxiated newborns.
        Pediatr Neurol. 2003; 28: 342-346
        • Martinez-Biarge M.
        • Diez-Sebastian J.
        • Wusthoff C.J.
        • et al.
        Feeding and communication impairments in infants with central grey matter lesions following perinatal hypoxic-ischaemic injury.
        Europ J Paediatr Neurol. 2012; 16: 688-696
        • Barkovich A.J.
        • Hajnal B.L.
        • Vigneron D.
        • et al.
        Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems.
        AJNR Am J Neuroradiol. 1998; 19: 143-149
        • Martinez-Biarge M.
        • Diez-Sebastian J.
        • Kapellou O.
        • et al.
        Predicting motor outcome and death in term hypoxic-ischemic encephalopathy.
        Neurology. 2011; 76: 2055-2061
        • Weeke L.C.
        • Groenendaal F.
        • Mudigonda K.
        • et al.
        A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and therapeutic hypothermia.
        J Pediatr. 2018; 192: 33-40.e2
        • Barkovich A.J.
        • Miller S.P.
        • Bartha A.
        • et al.
        MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy.
        AJNR Am J Neuroradiol. 2006; 27: 533-547
        • Barkovich A.J.
        • Baranski K.
        • Vigneron D.
        • et al.
        Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates.
        AJNR Am J Neuroradiol. 1999; 20: 1399-1405
        • Bednarek N.
        • Mathur A.
        • Inder T.
        • et al.
        Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy.
        Neurology. 2012; 78: 1420-1427
        • Imai K.
        • de Vries L.S.
        • Alderliesten T.
        • et al.
        MRI changes in the thalamus and basal ganglia of full-term neonates with perinatal asphyxia.
        Neonatology. 2018; 114: 253-260
        • Rutherford M.
        • Ramenghi L.A.
        • Edwards A.D.
        • et al.
        Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised controlled trial.
        Lancet Neurol. 2010; 9: 39-45
        • Sarkar S.S.
        • Gupta S.
        • Bapuraj J.R.
        • et al.
        Brainstem hypoxic-ischemic lesions on MRI in infants treated with therapeutic cooling: effects on the length of stay and mortality.
        J Perinatol. 2021; 41: 512-518
        • Lucke A.M.
        • Shetty A.N.
        • Hagan J.L.
        • et al.
        Early proton magnetic resonance spectroscopy during and after therapeutic hypothermia in perinatal hypoxic-ischemic encephalopathy.
        Pediatr Radiol. 2019; 49: 941-950
        • Lally P.J.
        • Montaldo P.
        • Oliveira V.
        • et al.
        Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study.
        Lancet Neurol. 2019; 18: 35-45
        • Alderliesten T.
        • de Vries L.S.
        • Staats L.
        • et al.
        MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia.
        Arch Dis Child Fetal Neonatal Ed. 2017; 102: F147-F152
        • Ancora G.
        • Testa C.
        • Grandi S.
        • et al.
        Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling.
        Neuroradiology. 2013; 55: 1017-1025
        • Tharmapoopathy P.
        • Chisholm P.
        • Barlas A.
        • et al.
        In clinical practice, cerebral MRI in newborns is highly predictive of neurodevelopmental outcome after therapeutic hypothermia.
        Europ J Paediatr Neurol. 2020; 25: 127-133
        • Shankaran S.
        • McDonald S.A.
        • Laptook A.R.
        • et al.
        Neonatal magnetic resonance imaging pattern of brain injury as a biomarker of childhood outcomes following a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy.
        J Pediatr. 2015; 167: 987-993.e3
        • Shankaran S.
        • Barnes P.D.
        • Hintz S.R.
        • et al.
        Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy.
        Arch Dis Child Fetal Neonatal Ed. 2012; 97: F398-F404
        • Bach A.M.
        • Fang A.Y.
        • Bonifacio S.
        • et al.
        Early magnetic resonance imaging predicts 30-month outcomes after therapeutic hypothermia for neonatal encephalopathy.
        J Pediatr. 2021; 238: 94-101.e1
        • Wintermark P.
        • Hansen A.
        • Soul J.
        • et al.
        Early versus late MRI in asphyxiated newborns treated with hypothermia.
        Arch Dis Child Fetal Neonatal Ed. 2011; 96: F36-F44
        • Charon V.
        • Proisy M.
        • Ferré J.C.
        • et al.
        Comparison of early and late MRI in neonatal hypoxic-ischemic encephalopathy using three assessment methods.
        Pediatr Radiol. 2015; 45: 1988-2000
        • O'Kane A.
        • Vezina G.
        • Chang T.
        • et al.
        Early versus Late brain magnetic resonance imaging after neonatal hypoxic ischemic encephalopathy treated with therapeutic hypothermia.
        J Pediatr. 2021; 232: 73-79.e2
        • Barta H.
        • Jermendy A.
        • Kolossvary M.
        • et al.
        Prognostic value of early, conventional proton magnetic resonance spectroscopy in cooled asphyxiated infants.
        BMC Pediatr. 2018; 18: 302
        • Shibasaki J.
        • Niwa T.
        • Piedvache A.
        • et al.
        Comparison of predictive values of magnetic resonance biomarkers based on scan timing in neonatal encephalopathy following therapeutic hypothermia.
        J Pediatr. 2021; 239: 101-109.e4
        • Barkovich A.J.
        The encephalopathic neonate: choosing the proper imaging technique.
        AJNR Am J Neuroradiol. 1997; 18: 1816-1820
        • Daneman A.
        • Epelman M.
        • Blaser S.
        • et al.
        Imaging of the brain in full-term neonates: does sonography still play a role?.
        Pediatr Radiol. 2006; 36: 636-646
        • Epelman M.
        • Daneman A.
        • Chauvin N.
        • et al.
        Head Ultrasound and MR imaging in the evaluation of neonatal encephalopathy: competitive or complementary imaging studies?.
        Magn Reson Imaging Clin N Am. 2012; 20: 93-115
        • Debillon T.
        • N'Guyen S.
        • Muet A.
        • et al.
        Limitations of ultrasonography for diagnosing white matter damage in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2003; 88: F275-F279
        • Blankenberg F.G.
        • Norbash A.M.
        • Lane B.
        • et al.
        Neonatal intracranial ischemia and hemorrhage: diagnosis with US, CT, and MR imaging.
        Radiology. 1996; 199: 253-259
        • Maalouf E.F.
        • Duggan P.J.
        • Counsell S.J.
        • et al.
        Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants.
        Pediatrics. 2001; 107: 719-727
        • Sewell E.K.
        • Andescavage N.N.
        Neuroimaging for neurodevelopmental prognostication in high-risk neonates.
        Clin Perinatol. 2018; 45: 421-437
        • Epelman M.
        • Daneman A.
        • Kellenberger C.J.
        • et al.
        Neonatal encephalopathy: a prospective comparison of head US and MRI.
        Pediatr Radiol. 2010; 40: 1640-1650
        • Hendee W.R.
        • O'Connor M.K.
        Radiation risks of medical imaging: separating fact from fantasy.
        Radiology. 2012; 264: 312-321
        • Frush D.P.
        Whats and whys with neonatal CT.
        Pediatrics. 2014; 133: e1738-e1739
        • Barnette A.R.
        • Horbar J.D.
        • Soll R.F.
        • et al.
        Neuroimaging in the evaluation of neonatal encephalopathy.
        Pediatrics. 2014; 133: e1508-e1517
        • James B.A.
        • Charles R.
        Brain and spine injuries in infancy and childhood.
        in: Zinner S. Pediatric neuroimaging. 6th edition. Wolters Kluwer, Philadelphia2019: 263-404
        • Chao C.P.
        • Zaleski C.G.
        • Patton A.C.
        Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings.
        Radiographics. 2006; 26: S159-S172
        • Hanrahan J.D.
        • Sargentoni J.
        • Azzopardi D.
        • et al.
        Cerebral metabolism within 18 Hours of birth asphyxia: a proton magnetic resonance spectroscopy study.
        Pediatr Res. 1996; 39: 584-590
        • Heinz E.R.
        • Provenzale J.M.
        Imaging findings in neonatal hypoxia: a practical review.
        AJR Am J Roentgenol. 2009; 192: 41-47
        • Zarifi M.K.
        • Astrakas L.G.
        • Poussaint T.Y.
        • et al.
        Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia.
        Radiology. 2002; 225: 859-870
        • Lange T.
        • Dydak U.
        • Roberts T.P.L.
        • et al.
        Pitfalls in lactate measurements at 3T.
        Am J Neuroradiol. 2006; 27: 895-901
        • Leth H.
        • Toft P.B.
        • Pryds O.
        • et al.
        Brain lactate in preterm and growth-retarded neonates.
        Acta Paediatr. 1995; 84: 495-499