Review Article| Volume 49, ISSUE 3, P623-640, September 2022

Download started.


Imaging of Congenital Spine Malformations


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Schwartz E.C.
        • Barkovich A.J.
        Congenital anomalies of the spine.
        in: ZinnerS PecarichL. Pediatric neuroimaging. 6th edition. Wolters Kluwer, Philadelphia2018: 1311-1377
      1. Neural tube defects, susceptibility to; NTD. OMIM: online mendelian inheritance in man.
        (Available at:) (Accessed September 19, 2021)
        • Kaplan K.M.
        • Spivak J.M.
        • Bendo J.A.
        Embryology of the spine and associated congenital abnormalities.
        Spine J. 2005; 5: 564-576
        • Tortori-Donati P.
        • Rossi A.
        • Cama A.
        Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification.
        Neuroradiology. 2000; 42: 471-491
        • Rossi A.
        • Biancheri R.
        • Cama A.
        • et al.
        Imaging in spine and spinal cord malformations.
        Eur J Radiol. 2004; 50: 177-200
        • Trapp B.
        • de Andrade Lourencao Freddi T.
        • de Oliveira Morais Hans M.
        • et al.
        A practical approach to diagnosis of spinal dysraphism.
        Radiographics. 2021; 41: 559-575
        • Van Allen M.I.
        • Kalousek D.K.
        • Chernoff G.F.
        • et al.
        Evidence for multi-site closure of the neural tube in humans.
        Am J Med Genet. 1993; 47: 723-743
        • Rufener S.L.
        • Ibrahim M.
        • Raybaud C.A.
        • et al.
        Congenital spine and spinal cord malformations--pictorial review.
        AJR Am J Roentgenol. 2010; 194: S26-S37
        • Reghunath A.
        • Ghasi R.G.
        • Aggarwal A.
        Unveiling the tale of the tail: an illustration of spinal dysraphisms.
        Neurosurg Rev. 2021; 44: 97-114
        • Adzick N.S.
        • Thom E.A.
        • Spong C.Y.
        • et al.
        A randomized trial of prenatal versus postnatal repair of myelomeningocele.
        N Engl J Med. 2011; 364: 993-1004
        • Grimme J.D.
        • Castillo M.
        Congenital anomalies of the spine.
        Neuroimaging Clin N Am. 2007; 17: 1-16
        • Wang L.L.
        • Bierbrauer K.S.
        Congenital and hereditary diseases of the spinal cord.
        Semin Ultrasound CT MRI. 2017; 38: 105-125
        • Choi S.
        • McComb J.G.
        Long-term outcome of terminal myelocystocele patients.
        Pediatr Neurosurg. 2000; 32: 86-91
        • Kumar J.
        • Afsal M.
        • Garg A.
        Imaging spectrum of spinal dysraphism on magnetic resonance: a pictorial review.
        World J Radiol. 2017; 9: 178-190
        • Bell R.
        • Glinianaia S.V.
        • Tennant P.W.
        • et al.
        Peri-conception hyperglycaemia and nephropathy are associated with risk of congenital anomaly in women with pre-existing diabetes: a population-based cohort study.
        Diabetologia. 2012; 55: 936-947
        • Heuser C.C.
        • Hulinky R.S.
        • Jackson G.M.
        Caudal regression syndrome.
        in: Copel J.A. D’Alton M.E. Feltovich H. Obstetric imaging: fetal diagnosis and care. 2nd edition. Elsevier, Philadelphia2018: 291-294
        • Remondino R.G.
        • Tello C.A.
        • Bersusky E.S.
        • et al.
        Surgical treatment of segmental spinal dysgenesis: a report of 19 cases.
        Spine Deform. 2020; 9: 539-547
        • Bristol R.E.
        • Theodore N.
        • Rekate H.L.
        Segmental spinal dysgenesis: report of four cases and proposed management strategy.
        Childs Nerv Syst. 2007; 23: 359-364
        • Wells R.G.
        • Sty J.R.
        Imaging of sacrococcygeal germ cell tumors.
        RadioGraphics. 1990; 10: 701-713
        • Swamy R.
        • Embleton N.
        • Hale J.
        Sacrococcygeal teratoma over two decades: birth prevalence, prenatal diagnosis and clinical outcomes.
        Prenat Diagn. 2008; 28: 1048-1051
        • Danzer E.
        • Hubbard A.M.
        • Hedrick H.L.
        • et al.
        Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI.
        Am J Roentgenol. 2006; 187: W350-W356