Advertisement
Review Article| Volume 49, ISSUE 2, P485-502, June 2022

Download started.

Ok

Nutritional Supplements to Improve Outcomes in Preterm Neonates

Published:April 21, 2022DOI:https://doi.org/10.1016/j.clp.2022.02.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Glass H.C.
        • et al.
        Outcomes for extremely premature infants.
        Anesth Analg. 2015; 120: 1337-1351
        • Rysavy M.A.
        • et al.
        Assessment of an Updated neonatal research network extremely preterm birth outcome model in the Vermont oxford network.
        JAMA Pediatr. 2020; 174: e196294
        • Chawla S.
        • et al.
        Association of neurodevelopmental outcomes and neonatal morbidities of extremely premature infants with differential exposure to antenatal steroids.
        JAMA Pediatr. 2016; 170: 1164-1172
        • Han J.
        • et al.
        Associations of early nutrition with growth and body composition in very preterm infants: a prospective cohort study.
        Eur J Clin Nutr. 2022; 76: 103-110
        • Ramel S.E.
        • Haapala J.
        • Super J.
        • et al.
        Nutrition, illness and body composition in very low birth weight preterm infants: implications for nutritional management and neurocognitive outcomes.
        Nutrients. 2020; 12: 145
        • Roggero P.
        • Liotto N.
        • Menis C.
        • et al.
        New insights in preterm nutrition.
        Nutrients. 2020; 12: 1857
        • Zhou P.
        • Li Y.
        • Ma L.Y.
        • et al.
        The role of immunonutrients in the prevention of necrotizing enterocolitis in preterm very low birth weight infants.
        Nutrients. 2015; 7: 7256-7270
        • Neu J.
        • Walker W.A.
        Necrotizing enterocolitis.
        New Engl J Med. 2011; 364: 255-264
        • Fanaroff A.A.
        • et al.
        Trends in neonatal morbidity and mortality for very low birthweight infants.
        Am J Obstet Gynecol. 2007; 196: 147 e141-148
        • Han S.M.
        • et al.
        Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: a multicenter cohort analysis.
        J Pediatr Surg. 2020; 55: 998-1001
        • Jacob J.
        • Kamitsuka M.
        • Clark R.H.
        • et al.
        Etiologies of nicu deaths.
        Pediatrics. 2015; 135: e59-e65
        • Lin P.W.
        • Stoll B.J.
        Necrotising enterocolitis.
        Lancet. 2006; 368: 1271-1283
        • Gordon P.V.
        • Swanson J.R.
        • MacQueen B.C.
        • et al.
        A critical question for nec researchers: can we create a consensus definition of nec that facilitates research progress?.
        Semin perinatol. 2017; 41: 7-14
        • Carl M.A.
        • et al.
        Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections.
        Clin Infect Dis. 2014; 58: 1211-1218
        • Tarr P.I.
        • Warner B.B.
        Gut bacteria and late-onset neonatal bloodstream infections in preterm infants.
        Semin Fetal Neonatal Med. 2016; 21: 388-393
        • DiGiulio D.B.
        Diversity of microbes in amniotic fluid.
        Semin Fetal Neonatal Med. 2012; 17: 2-11
        • Kennedy K.M.
        • et al.
        Fetal meconium does not have a detectable microbiota before birth.
        Nat Microbiol. 2021; 6: 865-873
        • Aagaard K.
        • et al.
        The placenta harbors a unique microbiome.
        Sci Translational Med. 2014; 6: 237ra265
        • Heida F.H.
        • et al.
        A necrotizing enterocolitis-associated gut microbiota is present in the meconium: results of a prospective study.
        Clin Infect Dis. 2016; 62: 863-870
        • La Rosa P.S.
        • et al.
        Patterned progression of bacterial populations in the premature infant gut.
        Proc Natl Acad Sci U S A. 2014; 111: 12522-12527
        • Claud E.C.
        • Walker W.A.
        Bacterial colonization, probiotics, and necrotizing enterocolitis.
        J Clin Gastroenterol. 2008; 42: S46-S52
        • Nanthakumar N.N.
        • Fusunyan R.D.
        • Sanderson I.
        • et al.
        Inflammation in the developing human intestine: a possible pathophysiologic contribution to necrotizing enterocolitis.
        Proc Natl Acad Sci U S A. 2000; 97: 6043-6048
        • Nanthakumar N.
        • et al.
        The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response.
        PLoS One. 2011; 6: e17776
        • Afrazi A.
        • et al.
        New insights into the pathogenesis and treatment of necrotizing enterocolitis: toll-like receptors and beyond.
        Pediatr Res. 2011; 69: 183-188
        • Morowitz M.J.
        • Poroyko V.
        • Caplan M.
        • et al.
        Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis.
        Pediatrics. 2010; 125: 777-785
        • Musemeche C.A.
        • Kosloske A.M.
        • Bartow S.A.
        • et al.
        Comparative effects of ischemia, bacteria, and substrate on the pathogenesis of intestinal necrosis.
        J Pediatr Surg. 1986; 21: 536-538
        • Cotten C.M.
        • et al.
        Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants.
        Pediatrics. 2009; 123: 58-66
        • Alexander V.N.
        • Northrup V.
        • Bizzarro M.J.
        Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis.
        J Pediatr. 2011; 159: 392-397
        • Torrazza R.M.
        • Neu J.
        The altered gut microbiome and necrotizing enterocolitis.
        Clin Perinatol. 2013; 40: 93-108
        • Warner B.B.
        • et al.
        Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study.
        Lancet. 2016; 387: 1928-1936
        • Pammi M.
        • et al.
        Intestinal Dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis.
        Microbiome. 2017; 5: 31
        • (WHO)., F. a. A. O. F. W. H. O.
        Guidelines for the evaluation of probiotics in food: report of a joint fao/whoworking group on drafting guidelines for the evaluation of probiotics in food 2002.
        (Available at:)
        • van den Akker C.H.P.
        • et al.
        Probiotics for preterm infants: a strain-specific systematic review and network meta-analysis.
        J Pediatr Gastroenterol Nutr. 2018; 67: 103-122
        • van den Akker C.H.P.
        • et al.
        Probiotics and preterm infants: a position paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition working group for probiotics and prebiotics.
        J Pediatr Gastroenterol Nutr. 2020; 70: 664-680
        • Chi C.
        • et al.
        Effects of probiotics in preterm infants: a network meta-analysis.
        Pediatrics. 2021; 147
        • Poindexter B.
        Use of probiotics in preterm infants.
        Pediatrics. 2021; 147
        • Marchand V.
        Using probiotics in the paediatric population.
        Paediatr Child Health. 2012; 17: 575-576
        • Marchand V.
        • Canadian Paediatric Society, N. a. G. C.
        Using probiotics in the paediatric population. Position statement of the Canadian paediatric society.
        (Available at:)
        • Gibson G.R.
        • et al.
        Expert consensus document: the international scientific association for probiotics and prebiotics (isapp) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 491-502
        • Wiciński M.
        • Sawicka E.
        • Gębalski J.
        • et al.
        Human milk oligosaccharides: health benefits, potential applications in infant formulas, and pharmacology.
        Nutrients. 2020; 12
        • Bode L.
        Human milk oligosaccharides: every baby needs a sugar mama.
        Glycobiology. 2012; 22: 1147-1162
        • Bode L.
        The functional biology of human milk oligosaccharides.
        Early Hum Dev. 2015; 91: 619-622
        • Eiwegger T.
        • et al.
        Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties.
        Pediatr Allergy Immunol. 2010; 21: 1179-1188
        • Chi C.
        • Buys N.
        • Li C.
        • et al.
        Effects of prebiotics on sepsis, necrotizing enterocolitis, mortality, feeding intolerance, time to full enteral feeding, length of hospital stay, and stool frequency in preterm infants: a meta-analysis.
        Eur J Clin Nutr. 2019; 73: 657-670
        • Gibson G.R.
        • Roberfroid M.B.
        Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.
        J Nutr. 1995; 125: 1401-1412
        • Dilli D.
        • et al.
        The propre-save study: effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants.
        J Pediatr. 2015; 166 (e541): 545-551
        • Sreenivasa B.
        • Kumar P.S.
        • Suresh Babu M.T.
        • et al.
        Role of synbiotics in the prevention of necrotizing enterocolitis in preterm neonates: a randomized controlled trial.
        Int J Contemp Pediatr. 2015; 2: 127-130
        • Nandhini L.P.
        • et al.
        Synbiotics for decreasing incidence of necrotizing enterocolitis among preterm neonates - a randomized controlled trial.
        J Matern Fetal Neonatal Med. 2016; 29: 821-825
        • Serce Pehlevan O.
        • Benzer D.
        • Gursoy T.
        • et al.
        Synbiotics use for preventing sepsis and necrotizing enterocolitis in very low birth weight neonates: a randomized controlled trial.
        Clin Exp Pediatr. 2020; 63: 226-231
        • Deshpande G.
        • Athalye-Jape G.
        • Patole S.
        Para-probiotics for preterm neonates-the next frontier.
        Nutrients. 2018; 10
        • Taverniti V.
        • Guglielmetti S.
        The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).
        Genes Nutr. 2011; 6: 261-274
        • Zorzela L.
        • Ardestani S.K.
        • McFarland L.V.
        • et al.
        Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature.
        Benef Microbes. 2017; 8: 739-754
        • Lahtinen S.J.
        Probiotic viability - does it matter?.
        Microb Ecol Health Dis. 2012; 23
        • Legrand D.
        Overview of lactoferrin as a natural immune modulator.
        J Pediatr. 2016; 173: S10-S15
        • Venkatesh M.P.
        • Pham D.
        • Kong L.
        • et al.
        Prophylaxis with lactoferrin, a novel antimicrobial agent, in a neonatal rat model of coinfection.
        Adv Ther. 2007; 24: 941-954
        • Zagulski T.
        • Lipinski P.
        • Zagulska A.
        • et al.
        Lactoferrin can protect mice against a lethal dose of escherichia coli in experimental infection in vivo.
        Br J Exp Pathol. 1989; 70: 697-704
        • Edde L.
        • et al.
        Lactoferrin protects neonatal rats from gut-related systemic infection.
        Am J Physiol. 2001; 281: G1140-G1150
        • Togawa J.
        • et al.
        Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance.
        Am J Physiol Gastrointest Liver Physiol. 2002; 283: G187-G195
        • Bellamy W.
        • Takase M.
        • Wakabayashi H.
        • et al.
        Antibacterial spectrum of lactoferricin b, a potent bactericidal peptide derived from the n-terminal region of bovine lactoferrin.
        J Appl Bacteriol. 1992; 73: 472-479
        • Tomita M.
        • Takase M.
        • Wakabayashi H.
        • et al.
        Antimicrobial peptides of lactoferrin.
        Adv Exp Med Biol. 1994; 357: 209-218
        • Buccigrossi V.
        • et al.
        Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation.
        Pediatr Res. 2007; 61: 410-414
        • Strunk T.
        • et al.
        Probiotics and antimicrobial protein and peptide levels in preterm infants.
        Acta Paediatr. 2017; 106: 1747-1753
        • Chen P.W.
        • Liu Z.S.
        • Kuo T.C.
        • et al.
        Prebiotic effects of bovine lactoferrin on specific probiotic bacteria.
        Biometals. 2017; 30: 237-248
        • Pammi M.
        • Suresh G.
        Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants.
        Cochrane database Syst Rev. 2020; 3: Cd007137
        • Ochoa T.J.
        • et al.
        Randomized controlled trial of bovine lactoferrin for prevention of sepsis and neurodevelopment impairment in infants weighing less than 2000 grams.
        J Pediatr. 2020; 219: 118-125.e5
        • Eibl M.M.
        • Wolf H.M.
        • Fürnkranz H.
        • et al.
        Prevention of necrotizing enterocolitis in low-birth-weight infants by iga-igg feeding.
        New Engl J Med. 1988; 319: 1-7
        • Rubaltelli F.F.
        • Benini F.
        • Sala M.
        Prevention of necrotizing enterocolitis in neonates at risk by oral administration of monomeric Igg.
        Dev Pharmacol Ther. 1991; 17: 138-143
        • Lawrence G.
        • et al.
        Enteral human igg for prevention of necrotising enterocolitis: a placebo-controlled, randomised trial.
        Lancet (London, England). 2001; 357: 2090-2094
        • Foster J.P.
        • Seth R.
        • Cole M.J.
        Oral immunoglobulin for preventing necrotizing enterocolitis in preterm and low birth weight neonates.
        Cochrane database Syst Rev. 2016; 4: Cd001816
        • Downard C.D.
        • et al.
        Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis.
        J Pediatr Surg. 2011; 46: 1023-1028
        • Yazji I.
        • et al.
        Endothelial tlr4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via enos-no-nitrite signaling.
        Proc Natl Acad Sci U S A. 2013; 110: 9451-9456
        • Watkins D.J.
        • Besner G.E.
        The role of the intestinal microcirculation in necrotizing enterocolitis.
        Semin Pediatr Surg. 2013; 22: 83-87
        • Nair J.
        • Lakshminrusimha S.
        Role of no and other vascular mediators in the etiopathogenesis of necrotizing enterocolitis.
        Front Biosci (Schol Ed). 2019; 11: 9-28
        • Chapman J.C.
        • Liu Y.
        • Zhu L.
        • et al.
        Arginine and citrulline protect intestinal cell monolayer tight junctions from hypoxia-induced injury in piglets.
        Pediatr Res. 2012; 72: 576-582
        • Becker R.M.
        • et al.
        Reduced serum amino acid concentrations in infants with necrotizing enterocolitis.
        J Pediatr. 2000; 137: 785-793
        • Di Lorenzo M.
        • Bass J.
        • Krantis A.
        Use of l-arginine in the treatment of experimental necrotizing enterocolitis.
        J Pediatr Surg. 1995; 30 (discussion 240-231): 235-240
        • Shah P.S.
        • Shah V.S.
        • Kelly L.E.
        Arginine supplementation for prevention of necrotising enterocolitis in preterm infants.
        Cochrane database Syst Rev. 2017; 4: CD004339
        • Bulus N.
        • Cersosimo E.
        • Ghishan F.
        • et al.
        Physiologic importance of glutamine.
        Metabolism. 1989; 38: 1-5
        • ziegler t. r.
        • et al.
        Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. a randomized, double-blind, controlled study.
        Ann Intern Med. 1992; 116: 821-828
        • Poindexter B.B.
        • et al.
        Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants.
        Am J Clin Nutr. 2003; 77: 737-743
        • Poindexter B.B.
        • et al.
        Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants.
        Pediatrics. 2004; 113: 1209-1215
        • Moe-Byrne T.
        • Brown J.V.
        • McGuire W.
        Glutamine supplementation to prevent morbidity and mortality in preterm infants.
        Cochrane database Syst Rev. 2016; 4: CD001457
        • Clandinin M.T.
        • et al.
        Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements.
        Early Hum Dev. 1980; 4: 121-129
        • Clark K.J.
        • Makrides M.
        • Neumann M.A.
        • et al.
        Determination of the optimal ratio of linoleic acid to alpha-linolenic acid in infant formulas.
        J Pediatr. 1992; 120: S151-S158
        • Lucas A.
        • Morley R.
        • Cole T.J.
        • et al.
        Breast milk and subsequent intelligence quotient in children born preterm.
        Lancet. 1992; 339: 261-264
        • Makrides M.
        • Simmer K.
        • Goggin M.
        • et al.
        Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants.
        Pediatr Res. 1993; 33: 425-427
        • Moon K.
        • Rao S.C.
        • Schulzke S.M.
        • et al.
        Longchain polyunsaturated fatty acid supplementation in preterm infants.
        Cochrane database Syst Rev. 2016; 12: CD000375
        • Jasani B.
        • Simmer K.
        • Patole S.K.
        • et al.
        Long chain polyunsaturated fatty acid supplementation in infants born at term.
        Cochrane database Syst Rev. 2017; 3: CD000376
        • Collins C.T.
        • et al.
        Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants.
        N Engl J Med. 2017; 376: 1245-1255
        • Serhan C.N.
        • Chiang N.
        • Van Dyke T.E.
        Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.
        Nat Rev Immunol. 2008; 8: 349-361
        • Blanco P.G.
        • et al.
        Oral docosahexaenoic acid given to pregnant mice increases the amount of surfactant in lung and amniotic fluid in preterm fetuses.
        Am J Obstet Gynecol. 2004; 190: 1369-1374
        • Akinsulire O.
        • et al.
        Early enteral administration of a complex lipid emulsion supplement prevents postnatal deficits in docosahexaenoic and arachidonic acids and increases tissue accretion of lipophilic nutrients in preterm piglets.
        JPEN J Parenter enteral Nutr. 2020; 44: 69-79
        • Koletzko B.
        • et al.
        Should formula for infants provide arachidonic acid along with dha? a position paper of the european academy of paediatrics and the child health foundation.
        Am J Clin Nutr. 2020; 111: 10-16
        • Yu V.Y.
        Scientific rationale and benefits of nucleotide supplementation of infant formula.
        Paediatr Child Health. 2002; 38: 543-549
        • Pickering L.K.
        • et al.
        Modulation of the immune system by human milk and infant formula containing nucleotides.
        Pediatrics. 1998; 101: 242-249
        • Wang L.
        • Mu S.
        • Xu X.
        • et al.
        Effects of dietary nucleotide supplementation on growth in infants: a meta-analysis of randomized controlled trials.
        Eur J Nutr. 2019; 58: 1213-1221
        • Carver J.D.
        • Stromquist C.I.
        Dietary nucleotides and preterm infant nutrition.
        J Perinatol. 2006; 26: 443-444
        • Wang L.
        • Liu J.
        • Lv H.
        • et al.
        Effects of nucleotides supplementation of infant formulas on plasma and erythrocyte fatty acid composition: a meta-analysis.
        PLoS One. 2015; 10: e0127758
        • Scopesi F.
        • et al.
        Lack of effect of dietary nucleotide supplementation on erythrocyte 2,3-diphosphoglycerate concentration. a study on preterm neonates.
        J Matern Fetal Neonatal Med. 2006; 19: 343-346
        • Georgieff M.K.
        Iron assessment to protect the developing brain.
        Am J Clin Nutr. 2017; 106: 1588S-1593S
        • Rao R.
        • Georgieff M.K.
        Iron therapy for preterm infants.
        Clin Perinatol. 2009; 36: 27-42
        • Baker R.D.
        • Greer F.R.
        • Committee on Nutrition American Academy of P.
        Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age).
        Pediatrics. 2010; 126: 1040-1050
        • Agostoni C.
        • et al.
        Enteral nutrient supply for preterm infants: commentary from the european society of paediatric gastroenterology, hepatology and nutrition committee on nutrition.
        J Pediatr Gastroenterol Nutr. 2010; 50: 85-91
        • Buchanan G.R.
        Paucity of clinical trials in iron deficiency: lessons learned from study of vlbw infants.
        Pediatrics. 2013; 131: e582-e584
        • Taylor T.A.
        • Kennedy K.A.
        Randomized trial of iron supplementation versus routine iron intake in vlbw infants.
        Pediatrics. 2013; 131: e433-e438
        • Franz A.R.
        • Mihatsch W.A.
        • Sander S.
        • et al.
        Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams.
        Pediatrics. 2000; 106: 700-706
        • Mills R.J.
        • Davies M.W.
        Enteral iron supplementation in preterm and low birth weight infants.
        Cochrane Database Syst Rev. 2012; 3: CD005095
        • McCarthy E.K.
        • Dempsey E.M.
        • Kiely M.E.
        Iron supplementation in preterm and low-birth-weight infants: a systematic review of intervention studies.
        Nutr Rev. 2019; 77: 865-877
        • Ho T.
        • Sarkar A.
        • Szalacha L.
        • et al.
        Intestinal microbiome in preterm infants influenced by enteral iron dosing.
        J Pediatr Gastroenterol Nutr. 2021; 72: e132-e138
        • Patel R.M.
        • et al.
        Enteral iron supplementation, red blood cell transfusion, and risk of bronchopulmonary dysplasia in very-low-birth-weight infants.
        Transfusion. 2019; 59: 1675-1682
        • Terrin G.
        • et al.
        Zinc in early life: a key element in the fetus and preterm neonate.
        Nutrients. 2015; 7: 10427-10446
        • Vallee B.L.
        • Auld D.S.
        Zinc coordination, function, and structure of zinc enzymes and other proteins.
        Biochemistry. 1990; 29: 5647-5659
        • Staub E.
        • Evers K.
        • Askie L.M.
        Enteral zinc supplementation for prevention of morbidity and mortality in preterm neonates.
        Cochrane database Syst Rev. 2021; 3: CD012797
        • Sazawal S.
        • et al.
        Zinc supplementation in infants born small for gestational age reduces mortality: a prospective, randomized, controlled trial.
        Pediatrics. 2001; 108: 1280-1286
        • Shenai J.P.
        • Chytil F.
        • Stahlman M.T.
        Liver vitamin a reserves of very low birth weight neonates.
        Pediatr Res. 1985; 19: 892-893
        • Shenai J.P.
        • Kennedy K.A.
        • Chytil F.
        • et al.
        Clinical trial of vitamin a supplementation in infants susceptible to bronchopulmonary dysplasia.
        J Pediatr. 1987; 111: 269-277
        • Rush M.G.
        • Shenai J.P.
        • Parker R.A.
        • et al.
        Intramuscular versus enteral vitamin a supplementation in very low birth weight neonates.
        J Pediatr. 1994; 125: 458-462
        • Tyson J.E.
        • et al.
        Vitamin a supplementation for extremely-low-birth-weight infants. national institute of child health and human development neonatal research network.
        N Engl J Med. 1999; 340: 1962-1968
        • Darlow B.A.
        • Graham P.J.
        • Rojas-Reyes M.X.
        Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants.
        Cochrane Database Syst Rev. 2016; 8: CD000501
        • Rakshasbhuvankar A.A.
        • et al.
        Enteral vitamin a for reducing severity of bronchopulmonary dysplasia: a randomized trial.
        Pediatrics. 2021; 147
        • Rysavy M.A.
        • et al.
        Should vitamin a injections to prevent bronchopulmonary dysplasia or death be reserved for high-risk infants? reanalysis of the national institute of child health and human development neonatal research network randomized trial.
        J Pediatr. 2021; 236: 78-85.e5
        • Tolia V.N.
        • Murthy K.
        • McKinley P.S.
        • et al.
        The effect of the national shortage of vitamin a on death or chronic lung disease in extremely low-birth-weight infants.
        JAMA Pediatr. 2014; 168: 1039-1044
        • Jensen E.A.
        • Foglia E.E.
        • Schmidt B.
        Evidence-based pharmacologic therapies for prevention of bronchopulmonary dysplasia: application of the grading of recommendations assessment, development, and evaluation methodology.
        Clin Perinatol. 2015; 42: 755-779
        • Doyle J.
        • et al.
        Does Vitamin C cause hemolysis in premature newborn infants? results of a multicenter double-blind, randomized, controlled trial.
        J Pediatr. 1997; 130: 103-109
        • Darlow B.A.
        • et al.
        Vitamin C supplementation in very preterm infants: a randomised controlled trial.
        Arch Dis Child Fetal Neonatal Ed. 2005; 90: F117-F122
        • Wagner C.L.
        • Greer F.R.
        • American Academy of Pediatrics Section on, B.
        • American Academy of Pediatrics Committee on, N
        Prevention of rickets and vitamin D deficiency in infants, children, and adolescents.
        Pediatrics. 2008; 122: 1142-1152
        • Monangi N.
        • Slaughter J.L.
        • Dawodu A.
        • et al.
        Vitamin D status of early preterm infants and the effects of vitamin d intake during hospital stay.
        Arch Dis Child Fetal Neonatal Ed. 2014; 99: F166-F168
        • Fort P.
        • et al.
        A comparison of 3 vitamin d dosing regimens in extremely preterm infants: a randomized controlled trial.
        J Pediatr. 2016; 174: 132-138 e131
        • Yang Y.
        • Li Z.
        • Yan G.
        • et al.
        Effect of different doses of vitamin d supplementation on preterm infants - an updated meta-analysis.
        J Matern Fetal Neonatal Med. 2018; 31: 3065-3074
        • Golan-Tripto I.
        • et al.
        The effect of vitamin d administration on vitamin d status and respiratory morbidity in late premature infants.
        Pediatr Pulmonol. 2020; 55: 3080-3087
        • Carey A.N.
        • Duggan C.
        50 years ago in the journal of pediatrics: vitamin e deficiency: a previously unrecognized cause of hemolytic anemia in the premature infant.
        J Pediatr. 2017; 181: 162
        • Phelps D.L.
        • Rosenbaum A.L.
        • Isenberg S.J.
        • et al.
        Tocopherol efficacy and safety for preventing retinopathy of prematurity: a randomized, controlled, double-masked trial.
        Pediatrics. 1987; 79: 489-500
        • Johnson L.
        • et al.
        Effect of sustained pharmacologic vitamin e levels on incidence and severity of retinopathy of prematurity: a controlled clinical trial.
        J Pediatr. 1989; 114: 827-838
        • Fish W.H.
        • Cohen M.
        • Franzek D.
        • et al.
        Effect of intramuscular vitamin E on mortality and intracranial hemorrhage in neonates of 1000 grams or less.
        Pediatrics. 1990; 85: 578-584
        • Speer M.E.
        • et al.
        Intraventricular hemorrhage and vitamin e in the very low-birth-weight infant: evidence for efficacy of early intramuscular vitamin E administration.
        Pediatrics. 1984; 74: 1107-1112
        • Brion L.P.
        • Bell E.F.
        • Raghuveer T.S.
        Vitamin E supplementation for prevention of morbidity and mortality in preterm infants.
        Cochrane Database Syst Rev. 2003; 4: CD003665
        • Bell E.F.
        • et al.
        Serum tocopherol levels in very preterm infants after a single dose of vitamin E at birth.
        Pediatrics. 2013; 132: e1626-e1633