Advertisement
Review Article| Volume 49, ISSUE 2, P393-404, June 2022

Download started.

Ok

Neonatal Glucose Homeostasis

  • Cynthia L. Blanco
    Correspondence
    Corresponding author: Pediatrics, UT Health San Antonio, 7703 Floyd Curl, San Antonio, TX 78229.
    Affiliations
    Division of Neonatology, Department of Pediatrics, UT Health San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA

    Neonatology Services, University Health System, 4502 Medical Dr, San Antonio, TX, 78229, USA
    Search for articles by this author
  • Jennifer Kim
    Affiliations
    Division of Neonatology, Department of Pediatrics, UT Health San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA
    Search for articles by this author
Published:April 21, 2022DOI:https://doi.org/10.1016/j.clp.2022.02.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khan K.
        • Saha A.R.
        A study on the correlation between cord blood glucose level and the apgar score.
        J Clin Diagn Res. 2013; 7: 308-311
        • Srinivasan G.
        • Pildes R.S.
        • Cattamanchi G.
        • et al.
        Plasma glucose values in normal neonates: a new look.
        J Pediatr. 1986; 109: 114-117
        • Thornton P.S.
        • Stanley C.A.
        • De Leon D.D.
        • et al.
        Recommendations from the pediatric endocrine society for evaluation and management of persistent hypoglycemia in neonates, infants, and children.
        J Pediatr. 2015; 167: 238-245
        • Harris D.L.
        • Weston P.J.
        • Gamble G.D.
        • et al.
        Glucose profiles in healthy term infants in the first 5 days: the glucose in well babies (GLOW) study.
        J Pediatr. 2020; 223: 34-41
        • van Kempen A.A.M.W.
        • Eskes P.F.
        • Nuytemans D.H.G.M.
        • et al.
        Lower versus traditional treatment threshold for neonatal hypoglycemia.
        N Engl J Med. 2020; 382: 534-544
        • Zhang J.
        • Shi W.
        • Chen C.
        Neonatal glycogen storage disease ia.
        Pediatr Neonatal. 2015; 56: 66-67
        • Thompson-Branch A.
        • Havranek T.
        Neonatal hypoglycemia.
        Pediatr Rev. 2017; 38: 147-157
        • Harris D.L.
        • Gamble G.D.
        • Weston P.J.
        • et al.
        What happens to blood glucose concentrations after oral treatment for neonatal hypoglycemia?.
        J Pediatr. 2017; 190: 136-141
        • Stanescu A.
        • Stoicescu S.M.
        Neonatal hypoglycemia screening in newborns from diabetic mothers--arguments and controversies.
        J Med Life. 2014; 7: 51-52
        • Shelley H.J.
        Carbohydrate reserves in the newborn infant.
        Br Med J. 1964; 1: 273-275
        • Ballard F.J.
        • Oliver I.T.
        Carbohydrate metabolism in liver from foetal and neonatal sheep.
        Biochem J. 1965; 95: 191-200
        • Blanco C.L.
        • McGill-Vargas L.L.
        • Gastaldelli A.
        • et al.
        Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.
        Endocrinology. 2015; 156: 813-823
        • McGill-Vargas L.
        • Gastaldelli A.
        • Liang H.
        • et al.
        Hepatic insulin resistance and altered gluconeogenic pathway in premature baboons.
        Endocrinology. 2017; 158: 1140-1151
        • Pierro A.
        • Nah S.A.
        Surgical management of congenital hyperinsulinism of infancy.
        Semin Pediatr Surg. 2011; 20: 50-53
        • Gaston V.
        • Le Bouc Y.
        • Soupre V.
        • et al.
        Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome.
        Eur J Hum Genet. 2001; 9: 409-418
        • Suri M.
        Approach to the diagnosis of overgrowth syndromes.
        Indian J Pediatr. 2016; 83: 1175-1187
        • Aoki Y.
        • Niihori T.
        • Kawame H.
        • et al.
        Germline mutations in HRAS proto-oncogene cause Costello syndrome.
        Nat Genet. 2005; 37: 1038-1040
        • Alexander S.
        • Ramadan D.
        • Alkhayyat H.
        • et al.
        Costello syndrome and hyperinsulinemic hypoglycemia.
        Am J Med Genet A. 2005; 139: 227-230
        • Matsuo T.
        • Ihara K.
        • Ochiai M.
        • et al.
        Hyperinsulinemic hypoglycemia of infancy in Sotos syndrome.
        Am J Med Genet A. 2012; 161: 34-37
        • Haymond M.W.
        • Karl I.E.
        • Feigin R.D.
        • et al.
        Hypoglycemia and maple syrup urine disease: defective gluconeogenesis.
        Pediatr Res. 1973; 7: 500-508
        • Merritt 2nd, J.L.
        • Norris M.
        • Kanungo S.
        Fatty acid oxidation disorders.
        Ann Transl Med. 2018; 6: 473
        • Hay Jr., W.W.
        • Raju T.N.
        • Higgins R.D.
        • et al.
        Knowledge gaps and research needs for understanding and treating neonatal hypoglycemia: workshop report from eunice kennedy shriver national institute of child health and human development.
        J Pediatr. 2009; 155: 612-617
        • McKinlay C.J.D.
        • Alsweiler J.M.
        • Anstice N.S.
        • et al.
        Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years.
        JAMA Pediatr. 2017; 171: 972-983
        • Saw H.-P.
        • Yao N.-W.
        • Chiu C.-D.
        • et al.
        The value of real-time continuous glucose monitoring in premature infants of diabetic mothers.
        PLoS One. 2017; 12https://doi.org/10.1371/journal.pone.0186486
        • Phillip M.
        • Battelino T.
        • Atlas E.
        • et al.
        Nocturnal glucose control with an artificial pancreas at a diabetes camp.
        N Engl J Med. 2013; 368: 824-833
        • Uettwiller F.
        • Chemin A.
        • Bonnemaison E.
        • et al.
        Real-time continuous glucose monitoring reduces the duration of hypoglycemia episodes: a randomized trial in very low birth weight neonates.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0116255
        • Quinn A.R.
        • Blanco C.L.
        • Perego C.
        • et al.
        The ontogeny of the endocrine pancreas in the fetal/newborn baboon.
        J Endocrinol. 2012; 214: 289-299
        • Lilien L.D.
        • Pildes R.S.
        • Srinivasan G.
        • et al.
        Treatment of neonatal hypoglycemia with minibolus and intraveous glucose infusion.
        J Pediatr. 1980; 97: 295-298
        • Hegarty J.E.
        • Harding J.E.
        • Gamble G.D.
        • et al.
        Prophylactic oral dextrose gel for newborn babies at risk of neonatal hypoglycaemia: a randomised controlled dose-finding trial (the Pre-hPOD Study).
        PLoS Med. 2016; 13 (Published 2016 Oct 25): e1002155
        • Blanco C.L.
        • Baillargeon J.G.
        • Morrison R.L.
        • et al.
        Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities.
        J Perinatol. 2006; 26: 737-741
        • McGill-Vargas L.L.
        • Johnson-Pais T.
        • Johnson M.C.
        • et al.
        Developmental regulation of key gluconeogenic molecules in nonhuman primates.
        Physiol Rep. 2014; 2: e12243
        • Sunehag A.L.
        • Haymond M.W.
        • Schanler R.J.
        • et al.
        Gluconeogenesis in very low birth weight infants receiving total parenteral nutrition.
        Diabetes. 1999; 48: 791-800
        • Mitanchez-Mokhtari D.
        • Lahlou N.
        • Kieffer F.
        • et al.
        Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants.
        Pediatrics. 2004; 113: 537-541
        • Kajantie E.
        • Osmond C.
        • Barker D.J.P.
        • et al.
        Preterm birth−a risk factor for type 2 diabetes?: the Helsinki birth cohort study.
        Diabetes Care. 2010; 33: 2623-2625
        • Alexandrou G.
        • Skiöld B.
        • Karlén J.
        • et al.
        Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants.
        Pediatrics. 2010; 125: e584-e591
        • Callaway D.A.
        • McGill-Vargas L.L.
        • Quinn A.
        • et al.
        Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons.
        Pediatr Res. 2018; 83: 702-711
        • Li S.
        • Zhang M.
        • Tian H.
        • et al.
        Preterm birth and risk of type 1 and type 2 diabetes: systematic review and meta-analysis.
        Obes Rev. 2014; 15: 804-811
        • Zhang J.
        • Shi W.
        • Chen C.
        Neonatal glycogen storage disease la.
        Pediatr Neonatal. 2015; 56: 66-67