Advertisement
Review Article| Volume 49, ISSUE 2, P355-379, June 2022

Parenteral Nutrition

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Embleton N.D.
        • Simmer K.
        Koletzko B. Poindexter B. Uauy R. Practice of parenteral nutrition in VLBW and ELBW infants. Karger, Basel2014
        • Moyses H.E.
        • Johnson M.J.
        • Leaf A.A.
        • et al.
        Early parenteral nutrition and growth outcomes in preterm infants: a systematic review and meta-analysis.
        Am J Clin Nutr. 2013; 97: 816-826
        • Embleton N.E.
        • Pang N.
        • Cooke R.J.
        Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants?.
        Pediatrics. 2001; 107: 270-273
        • Senterre T.
        • Rigo J.
        Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction.
        J Pediatr Gastroenterol Nutr. 2011; 53: 536-542
        • Senterre T.
        • Rigo J.
        Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants.
        Acta Paediatr. 2012; 101: e64-e70
        • Perrem L.
        • Semberova J.
        • O'Sullivan A.
        • et al.
        Effect of early parenteral nutrition discontinuation on time to regain birth weight in very low birth weight infants: a randomized controlled trial.
        JPEN J Parenter Enteral Nutr. 2019; 43: 883-890
        • Späth C.
        • Zamir I.
        • Sjöström E.S.
        • et al.
        Use of concentrated parenteral nutrition solutions is associated with improved nutrient intakes and postnatal growth in very low-birth-weight infants.
        JPEN J Parenter Enteral Nutr. 2020; 44: 327-336
        • Hsiao C.C.
        • Tsai M.L.
        • Chen C.C.
        • et al.
        Early optimal nutrition improves neurodevelopmental outcomes for very preterm infants.
        Nutr Rev. 2014; 72: 532-540
        • Prusakov P.
        • Speaks S.
        • Magers J.S.
        Parenteral nutrition in moderately preterm, otherwise healthy neonates is not associated with improved short-term growth outcomes.
        J Parenter Enteral Nutr. 2020; 44: 1519-1524
        • Denne S.C.
        • Poindexter B.B.
        Evidence supporting early nutritional support with parenteral amino acid infusion.
        Semin Perinatol. 2007; 31: 56-60
        • Patel P.
        • Bhatia J.
        Total parenteral nutrition for the very low birth weight infant.
        Semin Fetal Neonatal Med. 2017; 22: 2-7
        • Carlson S.
        • Kavars A.M.
        Parenteral nutrition.
        in: Groh Wargo S. Thompson M. Cox J. Academy of Nutrition and Dietetics pocket guide to neonatal nutrition. 2nd edition. Academy of Nutrition and Dietetics, Chicago2016: 32-76
      1. Excellence NIfHaC. Neonatal parenteral nutrition.
        (Available at:) (Accessed December 7, 2021)
        • Al-Jebawi Y.
        • Argawal N.
        • Groh Wargo S.
        • et al.
        Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants.
        J Neonatal Perinatal Med. 2020; 13: 207-214
        • Stephens B.E.
        • Walden R.V.
        • Gargus R.A.
        • et al.
        First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants.
        Pediatrics. 2009; 123: 1337-1343
        • Hartnoll G.
        • Betremieux P.
        • Modi N.
        Body water content of extremely preterm infants at birth.
        Arch Dis Child Fetal Neonatal Ed. 2000; 83: F56-F59
        • O'Brien F.
        • Walker I.A.
        Fluid homeostasis in the neonate.
        Paediatr Anaesth. 2014; 24: 49-59
        • Jochum F.
        • Moltu S.J.
        • Senterre T.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: fluid and electrolytes.
        Clin Nutr. 2018; 37: 2344-2353
        • Martin C.R.
        • Brown Y.F.
        • Ehrenkranz R.A.
        • et al.
        Nutritional practices and growth velocity in the first month of life in extremely premature infants.
        Pediatrics. 2009; 124: 649-657
        • Ehrenkranz R.A.
        • Das A.
        • Wrage L.A.
        • et al.
        Early nutrition mediates the influence of severity of illness on extremely LBW infants.
        Pediatr Res. 2011; 69: 522-529
        • van der Lugt N.M.
        • Smits-Wintjens V.E.
        • van Zwieten P.H.
        • et al.
        Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study.
        BMC Pediatr. 2010; 10: 52
        • Talpers S.S.
        • Romberger D.J.
        • Bunce S.B.
        • et al.
        Nutritionally associated increased carbon dioxide production. Excess total calories vs high proportion of carbohydrate calories.
        Chest. 1992; 102: 551-555
        • Crill C.M.
        • Gura K.M.
        Parenteral nutrition support.
        in: Corkins M.R. The ASPEN pediatric nutrition support core curriculum. 2nd edition. ASPEN, Silver Spring, MD2015: 593-614
        • van Goudoever J.B.
        • Carnielli V.
        • Darmaun D.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: amino acids.
        Clin Nutr. 2018; 37: 2315-2323
        • te Braake F.W.
        • van den Akker C.H.
        • Riedijk M.A.
        • et al.
        Parenteral amino acid and energy administration to premature infants in early life.
        Semin Fetal Neonatal Med. 2007; 12: 11-18
      2. 3. Amino acids.
        J Pediatr Gastroenterol Nutr. 2005; 41: S12-S18
        • Morgan C.
        • Burgess L.
        High protein intake does not prevent low plasma levels of conditionally essential amino acids in very preterm infants receiving parenteral nutrition.
        JPEN J Parenter Enteral Nutr. 2017; 41: 455-462
        • Valentine C.J.
        • Fernandez S.
        • Rogers L.K.
        • et al.
        Early amino-acid administration improves preterm infant weight.
        J Perinatol. 2009; 29: 428-432
        • Loui A.
        • Bührer C.
        Growth of very low birth weight infants after increased amino acid and protein administration.
        J Perinat Med. 2013; 41: 735-741
        • Trintis J.
        • Donohue P.
        • Aucott S.
        Outcomes of early parenteral nutrition for premature infants.
        J Perinatol. 2010; 30: 403-407
        • Vlaardingerbroek H.
        • Schierbeek H.
        • Rook D.
        • et al.
        Albumin synthesis in very low birth weight infants is enhanced by early parenteral lipid and high-dose amino acid administration.
        Clin Nutr. 2016; 35: 344-350
        • Ridout E.
        • Melara D.
        • Rottinghaus S.
        • et al.
        Blood urea nitrogen concentration as a marker of amino-acid intolerance in neonates with birthweight less than 1250 g.
        J Perinatol. 2005; 25: 130-133
        • Roggero P.
        • Giannì M.L.
        • Morlacchi L.
        • et al.
        Blood urea nitrogen concentrations in low-birth-weight preterm infants during parenteral and enteral nutrition.
        J Pediatr Gastroenterol Nutr. 2010; 51: 213-215
        • Bonsante F.
        • Gouyon J.B.
        • Robillard P.Y.
        • et al.
        Early optimal parenteral nutrition and metabolic acidosis in very preterm infants.
        PLoS One. 2017; 12: e0186936
        • Roelants J.A.
        • Vlaardingerbroek H.
        • van den Akker C.H.P.
        • et al.
        Two-year follow-up of a randomized controlled nutrition intervention trial in very low-birth-weight infants.
        JPEN J Parenter Enteral Nutr. 2018; 42: 122-131
        • Morgan C.
        • McGowan P.
        • Herwitker S.
        • et al.
        Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study.
        Pediatrics. 2014; 133: e120-e128
        • Osborn D.A.
        • Schindler T.
        • Jones L.J.
        • et al.
        Higher versus lower amino acid intake in parenteral nutrition for newborn infants.
        Cochrane Database Syst Rev. 2018; 3: Cd005949
        • Scattolin S.
        • Gaio P.
        • Betto M.
        • et al.
        Parenteral amino acid intakes: possible influences of higher intakes on growth and bone status in preterm infants.
        J Perinatol. 2013; 33: 33-39
        • Bellagamba M.P.
        • Carmenati E.
        • D'Ascenzo R.
        • et al.
        One extra gram of protein to preterm infants from birth to 1800 g: a single-blinded randomized clinical trial.
        J Pediatr Gastroenterol Nutr. 2016; 62: 879-884
        • Balakrishnan M.
        • Jennings A.
        • Przystac L.
        • et al.
        Growth and neurodevelopmental outcomes of early, high-dose parenteral amino acid intake in very low birth weight infants: a randomized controlled trial.
        JPEN J Parenter Enteral Nutr. 2018; 42: 597-606
        • Yang S.
        • Lee B.S.
        • Park H.W.
        • et al.
        Effect of high vs standard early parenteral amino acid supplementation on the growth outcomes in very low birth weight infants.
        JPEN J Parenter Enteral Nutr. 2013; 37: 327-334
        • Tottman A.C.
        • Bloomfield F.H.
        • Cormack B.E.
        • et al.
        Relationships between early nutrition and blood glucose concentrations in very preterm infants.
        J Pediatr Gastroenterol Nutr. 2018; 66: 960-966
        • Vlaardingerbroek H.
        • Vermeulen M.J.
        • Rook D.
        • et al.
        Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants.
        J Pediatr. 2013; 163: 638-644.e1-5
        • Kim K.
        • Kim N.J.
        • Kim S.Y.
        Safety and efficacy of early high parenteral lipid supplementation in preterm infants: a systematic review and meta-analysis.
        Nutrients. 2021; 13: 1535
        • Ottolini K.M.
        • Andescavage N.
        • Kapse K.
        • et al.
        Early lipid intake improves cerebellar growth in very low-birth-weight preterm infants.
        JPEN J Parenter Enteral Nutr. 2021; 45: 587-595
        • Correani A.
        • Giretti I.
        • Antognoli L.
        • et al.
        Hypertriglyceridemia and intravenous lipid titration during routine parenteral nutrition in small preterm infants.
        J Pediatr Gastroenterol Nutr. 2019; 69: 619-625
        • Boscarino G.
        • Conti M.G.
        • De Luca F.
        • et al.
        Intravenous lipid emulsions affect respiratory outcome in preterm newborn: a case-control study.
        Nutrients. 2021; 13: 1243
        • Winther B.
        • Jackson D.
        • Mulroy C.
        • et al.
        Evaluation of serum carnitine levels for pediatric patients receiving carnitine-free and carnitine-supplemented parenteral nutrition.
        Hosp Pharm. 2014; 49: 549-553
        • Crill C.M.
        • Storm M.C.
        • Christensen M.L.
        • et al.
        Carnitine supplementation in premature neonates: effect on plasma and red blood cell total carnitine concentrations, nutrition parameters and morbidity.
        Clin Nutr. 2006; 25: 886-896
        • Biagetti C.
        • Correani A.
        • D'Ascenzo R.
        • et al.
        Does intravenous fish oil affect the growth of extremely low birth weight preterm infants on parenteral nutrition?.
        Clin Nutr. 2019; 38: 2319-2324
        • Biagetti C.
        • Correani A.
        • D'Ascenzo R.
        • et al.
        Is intravenous fish oil associated with the neurodevelopment of extremely low birth weight preterm infants on parenteral nutrition?.
        Clin Nutr. 2021; 40: 2845-2850
        • Kasirer Y.
        • Bin-Nun A.
        • Raveh A.
        • et al.
        SMOFlipid protects preterm neonates against perinatal nutrition-associated cholestasis.
        Am J Perinatol. 2019; 36: 1382-1386
        • Memon N.
        • Hussein K.
        • Hegyi T.
        • et al.
        Essential fatty acid deficiency with SMOFlipid reduction in an infant with intestinal failure-associated liver disease.
        JPEN J Parenter Enteral Nutr. 2019; 43: 438-441
        • Carey A.N.
        • Rudie C.
        • Mitchell P.D.
        • et al.
        Essential fatty acid status in surgical infants receiving parenteral nutrition with a composite lipid emulsion: a case series.
        JPEN J Parenter Enteral Nutr. 2019; 43: 305-310
        • Isemann B.
        • Mueller E.W.
        • Narendran V.
        • et al.
        Impact of early sodium supplementation on hyponatremia and growth in premature infants: a randomized controlled trial.
        JPEN J Parenter Enteral Nutr. 2016; 40: 342-349
      3. Kleinman R.E. Greer F.R. Pediatric nutrition. 8th edition. American Academy of Pediatrics, Itasca (Illinois)2019: 1688
        • Mihatsch W.
        • Fewtrell M.
        • Goulet O.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: calcium, phosphorus and magnesium.
        Clin Nutr. 2018; 37: 2360-2365
        • Mimouni F.
        • Mandel D.
        • Lubetzky R.
        • et al.
        Nutritional care of preterm infants: scientific basis and practical guidelines. 110. Karger, Basel2014: 140-151
        • MacKay M.W.
        • Fitzgerald K.A.
        • Jackson D.
        The solubility of calcium and phosphate in two specialty amino acid solutions.
        JPEN J Parenter Enteral Nutr. 1996; 20: 63-66
        • Huston R.K.
        • Christensen J.M.
        • Alshahrani S.M.
        • et al.
        Calcium chloride and calcium gluconate in neonatal parenteral nutrition solutions with added cysteine: compatibility studies using laser light obscuration methodology.
        JPEN J Parenter Enteral Nutr. 2019; 43: 426-433
        • Bonsante F.
        • Iacobelli S.
        • Latorre G.
        • et al.
        Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants: it is time to change the composition of the early parenteral nutrition.
        PLoS One. 2013; 8: e72880
        • Hair A.B.
        • Chetta K.E.
        • Bruno A.M.
        • et al.
        Delayed introduction of parenteral phosphorus is associated with hypercalcemia in extremely preterm infants.
        J Nutr. 2016; 146: 1212-1216
        • Cormack B.E.
        • Jiang Y.
        • Harding J.E.
        • et al.
        Neonatal refeeding syndrome and clinical outcome in extremely low-birth-weight babies: secondary cohort analysis from the ProVIDe trial.
        J Parenter Enteral Nutr. 2021; 45: 65-78
        • Zemrani B.
        • McCallum Z.
        • Bines J.E.
        Trace element provision in parenteral nutrition in children: one size does not fit all.
        Nutrients. 2018; 10
        • Hardy G.
        • Wong T.
        • Morrissey H.
        • et al.
        Parenteral provision of micronutrients to pediatric patients: an international expert consensus paper.
        JPEN J Parenter Enteral Nutr. 2020; 44: S5-S23
        • Domellof M.
        • Szitanyi P.
        • Simchowitz V.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: iron and trace minerals.
        Clin Nutr. 2018; 37: 2354-2359
        • Olson L.M.
        • Wieruszewski P.M.
        • Jannetto P.J.
        • et al.
        Quantitative assessment of trace-element contamination in parenteral nutrition components.
        JPEN J Parenter Enteral Nutr. 2019; 43: 970-976
        • Altarelli M.
        • Ben-Hamouda N.
        • Schneider A.
        • et al.
        Copper deficiency: causes, manifestations, and treatment.
        Nutr Clin Pract. 2019; 34: 504-513
        • Kanike N.
        • Groh-Wargo S.
        • Thomas M.
        • et al.
        Risk of iodine deficiency in extremely low gestational age newborns on parenteral nutrition.
        Nutrients. 2020; 12
        • Zimmermann M.B.
        • Andersson M.
        Prevalence of iodine deficiency in Europe in 2010.
        Ann Endocrinol (Paris). 2011; 72: 164-166
      4. Notes from the field: zinc deficiency dermatitis in cholestatic extremely premature infants after a nationwide shortage of injectable zinc - Washington, DC, December 2012.
        MMWR Morb Mortal Wkly Rep. 2013; 62: 136-137
        • Bronsky J.
        • Campoy C.
        • Braegger C.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: vitamins.
        Clin Nutr. 2018; 37: 2366-2378
        • Chessex P.
        • Laborie S.
        • Nasef N.
        • et al.
        Shielding parenteral nutrition from light improves survival rate in premature infants.
        JPEN J Parenter Enteral Nutr. 2017; 41: 378-383
        • Polegato B.F.
        • Pereira A.G.
        • Azevedo P.S.
        • et al.
        Role of thiamin in health and disease.
        Nutr Clin Pract. 2019; 34: 558-564
        • Rochow N.
        • Raja P.
        • Liu K.
        • et al.
        Physiological adjustment to postnatal growth trajectories in healthy preterm infants.
        Pediatr Res. 2016; 79: 870-879
        • Fenton T.R.
        • Anderson D.
        • Groh-Wargo S.
        • et al.
        An attempt to standardize the calculation of growth velocity of preterm infants: evaluation of practical bedside methods.
        J Pediatr. 2018; 196: 77-83
        • Abdallah E.A.A.
        • Said R.N.
        • Mosallam D.S.
        • et al.
        Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity.
        Medicine (Baltimore). 2016; 95: e4837
        • DiBaise M.
        • Tarleton S.M.
        Hair, nails, and skin: differentiating cutaneous manifestations of micronutrient deficiency.
        Nutr Clin Pract. 2019; 34: 490-503
        • Faienza M.F.
        • D'Amato E.
        • Natale M.P.
        • et al.
        Metabolic bone disease of prematurity: diagnosis and management.
        Front Pediatr. 2019; 7: 143
        • Kovacs C.S.
        Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones.
        Physiol Rev. 2014; 94: 1143-1218
        • Fitzgerald K.A.
        • MacKay M.W.
        Calcium and phosphate solubility in neonatal parenteral nutrient solutions containing TrophAmine.
        Am J Hosp Pharm. 1986; 43: 88-93
        • Kavurt S.
        • Demirel N.
        • Yücel H.
        • et al.
        Evaluation of radiologic evidence of metabolic bone disease in very low birth weight infants at fourth week of life.
        J Perinatol. 2021; : 1-6
        • Nayrouz M.M.
        • Amin S.B.
        Cumulative amount of intravenous lipid intake and parenteral nutrition-associated cholestasis in neonates with gastrointestinal surgical disorders.
        Am J Perinatol. 2014; 31: 419-424
        • Gupta K.
        • Wang H.
        • Amin S.B.
        Parenteral nutrition-associated cholestasis in premature infants: role of macronutrients.
        JPEN J Parenter Enteral Nutr. 2016; 40: 335-341
        • Kapoor V.
        • Malviya M.N.
        • Soll R.
        Lipid emulsions for parenterally fed preterm infants.
        Cochrane Database Syst Rev. 2019; 6: Cd013163
        • Premkumar M.H.
        • Carter B.A.
        • Hawthorne K.M.
        • et al.
        Fish oil-based lipid emulsions in the treatment of parenteral nutrition-associated liver disease: an ongoing positive experience.
        Adv Nutr. 2014; 5: 65-70
        • Boullata J.I.
        • Gilbert K.
        • Sacks G.
        • et al.
        A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing.
        JPEN J Parenter Enteral Nutr. 2014; 38: 334-377
        • Corkins M.R.
        Aluminum effects in infants and children.
        Pediatrics. 2019; 144: e20193148
        • Appleman S.S.
        • Kalkwarf H.J.
        • Dwivedi A.
        • et al.
        Bone deficits in parenteral nutrition-dependent infants and children with intestinal failure are attenuated when accounting for slower growth.
        J Pediatr Gastroenterol Nutr. 2013; 57: 124-130
        • Hall A.R.
        • Le H.
        • Arnold C.
        • et al.
        Aluminum exposure from parenteral nutrition: early bile canaliculus changes of the hepatocyte.
        Nutrients. 2018; 10: 723
        • Hernández-Sánchez A.
        • Tejada-González P.
        • Arteta-Jiménez M.
        Aluminum in parenteral nutrition: a systematic review.
        Eur J Clin Nutr. 2013; 67: 230-238
        • Huston R.K.
        • Heisel C.F.
        • Vermillion B.R.
        • et al.
        Aluminum content of neonatal parenteral nutrition solutions: options for reducing aluminum exposure.
        Nutr Clin Pract. 2017; 32: 266-270
        • Hall A.R.
        • Arnold C.J.
        • Miller G.G.
        • et al.
        Infant parenteral nutrition remains a significant source for aluminum toxicity.
        JPEN J Parenter Enteral Nutr. 2017; 41: 1228-1233
        • Lima-Rogel V.
        • Romano-Moreno S.
        • de Jesus Lopez-Lopez E.
        • et al.
        Aluminum contamination in parenteral nutrition admixtures for low-birth-weight preterm infants in Mexico.
        JPEN J Parenter Enteral Nutr. 2016; 40: 1014-1020
        • Vanek V.W.
        • Borum P.
        • Buchman A.
        • et al.
        A call to action to bring safer parenteral micronutrient products to the U.S. market.
        Nutr Clin Pract. 2015; 30: 559-569
        • Hak E.B.
        • Storm M.C.
        • Helms R.A.
        Chromium and zinc contamination of parenteral nutrient solution components commonly used in infants and children.
        Am J Health Syst Pharm. 1998; 55: 150-154
        • Uchino A.
        • Noguchi T.
        • Nomiyama K.
        • et al.
        Manganese accumulation in the brain: MR imaging.
        Neuroradiology. 2007; 49: 715-720
        • Hardy G.
        Manganese in parenteral nutrition: who, when, and why should we supplement?.
        Gastroenterology. 2009; 137: S29-S35
        • Cies J.J.
        • Moore 2nd, W.S.
        Neonatal and pediatric peripheral parenteral nutrition: what is a safe osmolarity?.
        Nutr Clin Pract. 2014; 29: 118-124
        • Dugan S.
        • Le J.
        • Jew R.K.
        Maximum tolerated osmolarity for peripheral administration of parenteral nutrition in pediatric patients.
        JPEN J Parenter Enteral Nutr. 2014; 38: 847-851
        • Hartman C.
        • Shamir R.
        • Simchowitz V.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: complications.
        Clin Nutr. 2018; 37: 2418-2429
        • Miller M.
        • Donda K.
        • Bhutada A.
        • et al.
        Transitioning preterm infants from parenteral nutrition: a comparison of 2 protocols.
        JPEN J Parenter Enteral Nutr. 2017; 41: 1371-1379
        • Brennan A.-M.
        • Kiely M.E.
        • Fenton S.
        • et al.
        Standardized parenteral nutrition for the transition phase in preterm infants: a bag that fits.
        Nutrients. 2018; 10: 170
        • Liotto N.
        • Amato O.
        • Piemontese P.
        • et al.
        Protein intakes during weaning from parenteral nutrition drive growth gain and body composition in very low birth weight preterm infants.
        Nutrients. 2020; 12
        • Embleton N.D.
        • Simmer K.
        Practice of parenteral nutrition in VLBW and ELBW infants.
        World Rev Nutr Diet. 2014; 110: 177-189
        • Ehrenkranz R.A.
        Nutrition, growth and clinical outcomes.
        in: Koletzko B. Poindexter B. Uauy R. Nutritional care of preterm infants: scientific basis and practical guidelines. 110. Karger, Basel2014: 11-26
        • Joosten K.
        • Embleton N.
        • Yan W.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: energy.
        Clin Nutr. 2018; 37: 2309-2314
        • Mesotten D.
        • Joosten K.
        • van Kempen A.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: carbohydrates.
        Clin Nutr. 2018; 37: 2337-2343
        • Lapillonne A.
        • Fidler Mis N.
        • Goulet O.
        • et al.
        ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: lipids.
        Clin Nutr. 2018; 37: 2324-2336