Advertisement
Review Article| Volume 49, ISSUE 1, P219-242, March 2022

Novel Ventilation Strategies to Reduce Adverse Pulmonary Outcomes

Published:January 21, 2022DOI:https://doi.org/10.1016/j.clp.2021.11.019

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012.
        JAMA. 2015; 314: 1039-1051
        • Horbar J.D.
        • Edwards E.M.
        • Greenberg L.T.
        • et al.
        Variation in performance of neonatal intensive care units in the United States.
        JAMA Pediatr. 2017; 171: e164396
        • Vom Hove M.
        • Prenzel F.
        • Uhlig H.H.
        • et al.
        Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age.
        J Pediatr. 2014; 164: 40-45.e4
        • Short E.J.
        • Klein N.K.
        • Lewis B.A.
        • et al.
        Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes.
        Pediatrics. 2003; 112: e359
        • Klinger G.
        • Sokolover N.
        • Boyko V.
        • et al.
        Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants.
        Am J Obstet Gynecol. 2013; 208: 115.e1-115.e9
        • Lapcharoensap W.
        • Bennett M.V.
        • Xu X.
        • et al.
        Hospitalization costs associated with bronchopulmonary dysplasia in the first year of life.
        J Perinatol. 2020; 40: 130-137
        • Lapcharoensap W.
        • Gage S.C.
        • Kan P.
        • et al.
        Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort.
        JAMA Pediatr. 2015; 169: e143676
        • Ambalavanan N.
        • Walsh M.
        • Bobashev G.
        • et al.
        Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants.
        Pediatrics. 2011; 127: e106-e116
        • Clark R.H.
        • Gerstmann D.R.
        • Jobe A.H.
        • et al.
        Lung injury in neonates: causes, strategies for prevention, and long-term consequences.
        J Pediatr. 2001; 139: 478-486
        • Slutsky A.S.
        • Ranieri V.M.
        Ventilator-induced lung injury.
        N Engl J Med. 2013; 369: 2126-2136
        • Keszler M.
        • Sant'Anna G.
        Mechanical ventilation and bronchopulmonary dysplasia.
        Clin Perinatol. 2015; 42: 781-796
        • Dreyfuss D.
        • Soler P.
        • Basset G.
        • et al.
        High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure.
        Am Rev Respir Dis. 1988; 137: 1159-1164
        • Hernandez L.A.
        • Peevy K.J.
        • Moise A.A.
        • et al.
        Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.
        J Appl Physiol. 1989; 66: 2364-2368
        • Lachmann B.
        Open up the lung and keep the lung open.
        Intensive Care Med. 1992; 18: 319-321
        • Jobe A.H.
        Effects of chorioamnionitis on the fetal lung.
        Clin Perinatol. 2012; 39: 441-457
        • Jobe A.H.
        • Hillman N.
        • Polglase G.
        • et al.
        Injury and inflammation from resuscitation of the preterm infant.
        Neonatology. 2008; 94: 190-196
        • Bjorklund L.J.
        • Ingimarsson J.
        • Curstedt T.
        • et al.
        Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs.
        Pediatr Res. 1997; 42: 348-355
        • te Pas A.B.
        • Siew M.
        • Wallace M.J.
        • et al.
        Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model.
        Pediatr Res. 2009; 65: 537-541
        • te Pas A.B.
        • Walther F.J.
        A randomized, controlled trial of delivery-room respiratory management in very preterm infants.
        Pediatrics. 2007; 120: 322-329
        • Lista G.
        • Boni L.
        • Scopesi F.
        • et al.
        Sustained lung inflation at birth for preterm infants: a randomized clinical trial.
        Pediatrics. 2015; 135: e457-e464
        • Kirpalani H.
        • Ratcliffe S.J.
        • Keszler M.
        • et al.
        Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the SAIL randomized clinical trial.
        JAMA. 2019; 321: 1165-1175
        • Foglia E.E.
        • Te Pas A.B.
        • Kirpalani H.
        • et al.
        Sustained inflation vs standard resuscitation for preterm infants: a systematic review and meta-analysis.
        JAMA Pediatr. 2020; 174: e195897
        • Hussey S.G.
        • Ryan C.A.
        • Murphy B.P.
        Comparison of three manual ventilation devices using an intubated mannequin.
        Arch Dis Child Fetal Neonatal Ed. 2004; 89: F490-F493
        • Dawson J.A.
        • Gerber A.
        • Kamlin C.O.
        • et al.
        Providing PEEP during neonatal resuscitation: which device is best?.
        J Paediatr Child Health. 2011; 47: 698-703
        • Poulton D.A.
        • Schmolzer G.M.
        • Morley C.J.
        • et al.
        Assessment of chest rise during mask ventilation of preterm infants in the delivery room.
        Resuscitation. 2011; 82: 175-179
        • Solevag A.L.
        • Haemmerle E.
        • van Os S.
        • et al.
        A novel prototype neonatal resuscitator that controls tidal volume and ventilation rate: a comparative study of mask ventilation in a newborn manikin.
        Front Pediatr. 2016; 4: 129
        • Aziz K.
        • Lee C.H.C.
        • Escobedo M.B.
        • et al.
        Part 5: neonatal resuscitation 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care.
        Pediatrics. 2021; 147 (e2020038505E)
        • Welsford M.
        • Nishiyama C.
        • Shortt C.
        • et al.
        Initial oxygen use for preterm newborn resuscitation: a systematic review with meta-analysis.
        Pediatrics. 2019; 143: e20181828
        • Dawson J.A.
        • Kamlin C.O.
        • Vento M.
        • et al.
        Defining the reference range for oxygen saturation for infants after birth.
        Pediatrics. 2010; 125: e1340-e1347
        • Challis P.
        • Nydert P.
        • Hakansson S.
        • et al.
        Association of adherence to surfactant best practice uses with clinical outcomes among neonates in Sweden.
        JAMA Netw Open. 2021; 4: e217269
        • Ammari A.
        • Suri M.
        • Milisavljevic V.
        • et al.
        Variables associated with the early failure of nasal CPAP in very low birth weight infants.
        J Pediatr. 2005; 147: 341-347
        • Schmolzer G.M.
        • Kumar M.
        • Pichler G.
        • et al.
        Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis.
        BMJ. 2013; 347: f5980
        • Fischer H.S.
        • Buhrer C.
        Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis.
        Pediatrics. 2013; 132: e1351-e1360
        • Vento M.
        • Bohlin K.
        • Herting E.
        • et al.
        Surfactant administration via thin catheter: a practical guide.
        Neonatology. 2019; 116: 211-226
        • Roberts K.D.
        • Brown R.
        • Lampland A.L.
        • et al.
        Laryngeal mask airway for surfactant administration in neonates: a randomized, controlled trial.
        J Pediatr. 2018; 193: 40-46 e41
        • Reininger A.
        • Khalak R.
        • Kendig J.W.
        • et al.
        Surfactant administration by transient intubation in infants 29 to 35 weeks' gestation with respiratory distress syndrome decreases the likelihood of later mechanical ventilation: a randomized controlled trial.
        J Perinatol. 2005; 25: 703-708
        • Cummings J.J.
        • Gerday E.
        • Minton S.
        • et al.
        Aerosolized calfactant for newborns with respiratory distress: a randomized trial.
        Pediatrics. 2020; 146: e20193967
        • Minocchieri S.
        • Berry C.A.
        • Pillow J.J.
        • et al.
        Nebulised surfactant to reduce severity of respiratory distress: a blinded, parallel, randomised controlled trial.
        Arch Dis Child Fetal Neonatal Ed. 2019; 104: F313-F319
        • Pillow J.J.
        • Hillman N.
        • Moss T.J.
        • et al.
        Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs.
        Am J Respir Crit Care Med. 2007; 176: 63-69
        • Bharadwaj S.K.
        • Alonazi A.
        • Banfield L.
        • et al.
        Bubble versus other continuous positive airway pressure forms: a systematic review and meta-analysis.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 526-531
        • Miedema M.
        • van der Burg P.S.
        • Beuger S.
        • et al.
        Effect of nasal continuous and biphasic positive airway pressure on lung volume in preterm infants.
        J Pediatr. 2013; 162: 691-697
        • Owen L.S.
        • Morley C.J.
        • Davis P.G.
        Effects of synchronisation during SiPAP-generated nasal intermittent positive pressure ventilation (NIPPV) in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2015; 100: F24-F30
        • Lampland A.L.
        • Plumm B.
        • Worwa C.
        • et al.
        Bi-level CPAP does not improve gas exchange when compared with conventional CPAP for the treatment of neonates recovering from respiratory distress syndrome.
        Arch Dis Child Fetal Neonatal Ed. 2015; 100: F31-F34
        • Victor S.
        • Roberts S.A.
        • Mitchell S.
        • et al.
        Biphasic positive airway pressure or continuous positive airway pressure: a randomized trial.
        Pediatrics. 2016; 138: e20154095
        • Lemyre B.
        • Davis P.G.
        • De Paoli A.G.
        • et al.
        Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation.
        Cochrane Database Syst Rev. 2017; (CD003212)
        • Kirpalani H.
        • Millar D.
        • Lemyre B.
        • et al.
        A trial comparing noninvasive ventilation strategies in preterm infants.
        N Engl J Med. 2013; 369: 611-620
        • Owen L.S.
        • Morley C.J.
        • Dawson J.A.
        • et al.
        Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2011; 96: F422-F428
        • van Vonderen J.J.
        • Hooper S.B.
        • Hummler H.D.
        • et al.
        Effects of a sustained inflation in preterm infants at birth.
        J Pediatr. 2014; 165: 903-908.e1
        • Buzzella B.
        • Claure N.
        • D'Ugard C.
        • et al.
        A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants.
        J Pediatr. 2014; 164: 46-51
        • Mukerji A.
        • Belik J.
        Neonatal nasal intermittent positive pressure ventilation efficacy and lung pressure transmission.
        J Perinatol. 2015; 35: 716-719
        • Gerdes J.S.
        • Sivieri E.M.
        • Abbasi S.
        Factors influencing delivered mean airway pressure during nasal CPAP with the RAM cannula.
        Pediatr Pulmonol. 2016; 51: 60-69
        • Singh N.
        • McNally M.J.
        • Darnall R.A.
        Does the RAM cannula provide continuous positive airway pressure as effectively as the Hudson prongs in preterm neonates?.
        Am J Perinatol. 2019; 36: 849-854
        • Iyer N.P.
        • Chatburn R.
        Evaluation of a nasal cannula in noninvasive ventilation using a lung simulator.
        Respir Care. 2015; 60: 508-512
        • Gokce I.K.
        • Kaya H.
        • Ozdemir R.
        A randomized trial comparing the short binasal prong to the RAM cannula for noninvasive ventilation support of preterm infants with respiratory distress syndrome.
        J Matern Fetal Neonatal Med. 2021; 34: 1868-1874
        • Matlock D.N.
        • Bai S.
        • Weisner M.D.
        • et al.
        Tidal volume transmission during non-synchronized nasal intermittent positive pressure ventilation via RAM((R)) cannula.
        J Perinatol. 2019; 39: 723-729
        • Gibu C.
        • Cheng P.
        • Ward R.J.
        • et al.
        Feasibility and physiological effects of non-invasive neurally-adjusted ventilatory assist (NIV-NAVA) in preterm infants.
        Pediatr Res. 2017; 11: 15778
        • Colaizy T.T.
        • Kummet G.J.
        • Kummet C.M.
        • et al.
        Noninvasive neurally adjusted ventilatory assist in premature infants Postextubation.
        Am J Perinatol. 2017; 34: 593-598
        • Lee B.K.
        • Shin S.H.
        • Jung Y.H.
        • et al.
        Comparison of NIV-NAVA and NCPAP in facilitating extubation for very preterm infants.
        BMC Pediatr. 2019; 19: 298
        • Yagui A.C.
        • Meneses J.
        • Zolio B.A.
        • et al.
        Nasal continuous positive airway pressure (NCPAP) or noninvasive neurally adjusted ventilatory assist (NIV-NAVA) for preterm infants with respiratory distress after birth: a randomized controlled trial.
        Pediatr Pulmonol. 2019; 54: 1704-1711
        • Yagui A.C.
        • Goncalves P.A.
        • Murakami S.H.
        • et al.
        Is noninvasive neurally adjusted ventilatory assistance (NIV-NAVA) an alternative to NCPAP in preventing extubation failure in preterm infants?.
        J Matern Fetal Neonatal Med. 2021; 34: 3756-3760
        • Rochon M.E.
        • Lodygensky G.
        • Tabone L.
        • et al.
        Continuous neurally adjusted ventilation: a feasibility study in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 640-645
        • van der Hoeven M.
        • Brouwer E.
        • Blanco C.E.
        Nasal high frequency ventilation in neonates with moderate respiratory insufficiency.
        Arch Dis Child Fetal Neonatal Ed. 1998; 79: F61-F63
        • Mukerji A.
        • Sarmiento K.
        • Lee B.
        • et al.
        Non-invasive high-frequency ventilation versus bi-phasic continuous positive airway pressure (BP-CPAP) following CPAP failure in infants <1250 g: a pilot randomized controlled trial.
        J Perinatol. 2017; 37: 49-53
        • Zhu X.W.
        • Zhao J.N.
        • Tang S.F.
        • et al.
        Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with moderate-severe respiratory distress syndrome: a preliminary report.
        Pediatr Pulmonol. 2017; 52: 1038-1042
        • Chen L.
        • Wang L.
        • Ma J.
        • et al.
        Nasal high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome and ARDS after extubation: a randomized controlled trial.
        Chest. 2019; 155: 740-748
        • Iranpour R.
        • Armanian A.M.
        • Abedi A.R.
        • et al.
        Nasal high-frequency oscillatory ventilation (nHFOV) versus nasal continuous positive airway pressure (NCPAP) as an initial therapy for respiratory distress syndrome (RDS) in preterm and near-term infants.
        BMJ Paediatr Open. 2019; 3: e000443
        • Malakian A.
        • Bashirnezhadkhabaz S.
        • Aramesh M.R.
        • et al.
        Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial.
        J Matern Fetal Neonatal Med. 2020; 33: 2601-2607
        • Li J.
        • Li X.
        • Huang X.
        • et al.
        Noninvasive high-frequency oscillatory ventilation as respiratory support in preterm infants: a meta-analysis of randomized controlled trials.
        Respir Res. 2019; 20: 58
        • Haidar Shehadeh A.M.
        Non-invasive high flow oscillatory ventilation in comparison with nasal continuous positive pressure ventilation for respiratory distress syndrome, a literature review.
        J Matern Fetal Neonatal Med. 2021; 34: 2900-2909
        • Zhu X.W.
        • Shi Y.
        • Shi L.P.
        • et al.
        Non-invasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: study protocol for a multi-center prospective randomized controlled trial.
        Trials. 2018; 19: 319
        • Shi Y.
        • De Luca D.
        • group NAOp-Es
        Continuous positive airway pressure (CPAP) vs noninvasive positive pressure ventilation (NIPPV) vs noninvasive high frequency oscillation ventilation (NHFOV) as post-extubation support in preterm neonates: protocol for an assessor-blinded, multicenter, randomized controlled trial.
        BMC Pediatr. 2019; 19: 256
        • De Luca D.
        • Piastra M.
        • Pietrini D.
        • et al.
        Effect of amplitude and inspiratory time in a bench model of non-invasive HFOV through nasal prongs.
        Pediatr Pulmonol. 2012; 47: 1012-1018
        • Colaizy T.T.
        • Younis U.M.
        • Bell E.F.
        • et al.
        Nasal high-frequency ventilation for premature infants.
        Acta Paediatr. 2008; 97: 1518-1522
        • Czernik C.
        • Schmalisch G.
        • Buhrer C.
        • et al.
        Weaning of neonates from mechanical ventilation by use of nasopharyngeal high-frequency oscillatory ventilation: a preliminary study.
        J Matern Fetal Neonatal Med. 2012; 25: 374-378
        • Mukerji A.
        • Finelli M.
        • Belik J.
        Nasal high-frequency oscillation for lung carbon dioxide clearance in the newborn.
        Neonatology. 2013; 103: 161-165
        • Yoder B.A.
        • Albertine K.H.
        • Null Jr., D.M.
        High-frequency ventilation for non-invasive respiratory support of neonates.
        Semin Fetal Neonatal Med. 2016; 21: 162-173
        • Dumas De La Roque E.
        • Bertrand C.
        • Tandonnet O.
        • et al.
        Nasal high frequency percussive ventilation versus nasal continuous positive airway pressure in transient tachypnea of the newborn: a pilot randomized controlled trial (NCT00556738).
        Pediatr Pulmonol. 2011; 46: 218-223
        • Keel J.
        • De Beritto T.
        • Ramanathan R.
        • et al.
        Nasal high-frequency jet ventilation (NHFJV) as a novel means of respiratory support in extremely low birth weight infants.
        J Perinatol. 2021; 41: 1697-1703
        • Zhang S.
        • Garbutt V.
        • McBride J.T.
        Strain-induced growth of the immature lung.
        J Appl Physiol. 1996; 81: 1471-1476
        • Nobuhara K.K.
        • Fauza D.O.
        • DiFiore J.W.
        • et al.
        Continuous intrapulmonary distension with perfluorocarbon accelerates neonatal (but not adult) lung growth.
        J Pediatr Surg. 1998; 33: 292-298
        • Hedrick M.H.
        • Estes J.M.
        • Sullivan K.M.
        • et al.
        Plug the lung until it grows (PLUG): a new method to treat congenital diaphragmatic hernia in utero.
        J Pediatr Surg. 1994; 29: 612-617
        • Deprest J.A.
        • Nicolaides K.H.
        • Benachi A.
        • et al.
        Randomized trial of fetal surgery for severe left diaphragmatic hernia.
        N Engl J Med. 2021; 385: 107-118
        • Polin R.A.
        • Sahni R.
        Newer experience with CPAP.
        Semin Neonatol. 2002; 7: 379-389
        • Lam R.
        • Schilling D.
        • Scottoline B.
        • et al.
        The effect of extended continuous positive airway pressure on changes in lung volumes in stable premature infants: a randomized controlled trial.
        J Pediatr. 2020; 217: 66-72.e1
        • Abman S.H.
        • Collaco J.M.
        • Shepherd E.G.
        • et al.
        Interdisciplinary care of children with severe bronchopulmonary dysplasia.
        J Pediatr. 2017; 181: 12-28.e1
        • Muscedere J.G.
        • Mullen J.B.
        • Gan K.
        • et al.
        Tidal ventilation at low airway pressures can augment lung injury.
        Am J Respir Crit Care Med. 1994; 149: 1327-1334
        • Tremblay L.
        • Valenza F.
        • Ribeiro S.P.
        • et al.
        Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model.
        J Clin Invest. 1997; 99: 944-952
        • van Kaam A.H.
        • de Jaegere A.
        • Haitsma J.J.
        • et al.
        Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator-induced lung injury in newborn piglets.
        Pediatr Res. 2003; 53: 245-253
        • Tsuchida S.
        • Engelberts D.
        • Peltekova V.
        • et al.
        Atelectasis causes alveolar injury in nonatelectatic lung regions.
        Am J Respir Crit Care Med. 2006; 174: 279-289
        • Morley C.J.
        • Davis P.G.
        • Doyle L.W.
        • et al.
        Nasal CPAP or intubation at birth for very preterm infants.
        N Engl J Med. 2008; 358: 700-708
        • Mukerji A.
        • Abdul Wahab M.G.
        • Razak A.
        • et al.
        High CPAP vs. NIPPV in preterm neonates: a physiological cross-over study.
        J Perinatol. 2021; 41: 1690-1696
        • van Kaam A.H.
        • Rimensberger P.C.
        Lung-protective ventilation strategies in neonatology: what do we know--what do we need to know?.
        Crit Care Med. 2007; 35: 925-931
        • De Jaegere A.
        • van Veenendaal M.B.
        • Michiels A.
        • et al.
        Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants.
        Am J Respir Crit Care Med. 2006; 174: 639-645
        • Castoldi F.
        • Daniele I.
        • Fontana P.
        • et al.
        Lung recruitment maneuver during volume guarantee ventilation of preterm infants with acute respiratory distress syndrome.
        Am J Perinatol. 2011; 28: 521-528
        • Halter J.M.
        • Steinberg J.M.
        • Schiller H.J.
        • et al.
        Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment.
        Am J Respir Care Med. 2003; 167: 1620-1626
        • van der Burg P.S.
        • Miedema M.
        • de Jongh F.H.
        • et al.
        Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants.
        Crit Care Med. 2014; 42: 1524-1530
        • Keszler M.
        What if you could see lung inflation in real time?.
        J Pediatr. 2013; 162: 670-672
        • Tingay D.G.
        • Mills J.F.
        • Morley C.J.
        • et al.
        The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation.
        Am J Respir Crit Care Med. 2006; 173: 414-420
        • Krause M.F.
        • Jakel C.
        • Haberstroh J.
        • et al.
        Alveolar recruitment promotes homogeneous surfactant distribution in a piglet model of lung injury.
        Pediatr Res. 2001; 50: 34-43
        • Wheeler K.
        • Klingenberg C.
        • McCallion N.
        • et al.
        Volume-targeted versus pressure-limited ventilation in the neonate.
        Cochrane Database Syst Rev. 2010; (CD003666)
        • Peng W.
        • Zhu H.
        • Shi H.
        • et al.
        Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis.
        Arch Dis Child Fetal Neonatal Ed. 2014; 99: F158-F165
        • Gupta A.
        • Keszler M.
        Survey of ventilation practices in the neonatal intensive care units of the United States and Canada: use of volume-targeted ventilation and Barriers to its use.
        Am J Perinatol. 2019; 36: 484-489
        • Singh J.
        • Sinha S.K.
        • Clarke P.
        • et al.
        Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable?.
        J Pediatr. 2006; 149: 308-313
        • Keszler M.
        Update on mechanical ventilatory strategies.
        Neoreviews. 2013; 14: e237-e251
        • Nassabeh-Montazami S.
        • Abubakar K.M.
        • Keszler M.
        The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant.
        Pediatr Pulmonol. 2009; 44: 128-133
        • Sharma S.
        • Clark S.
        • Abubakar K.
        • et al.
        Tidal volume requirement in mechanically ventilated infants with meconium aspiration syndrome.
        Am J Perinatol. 2015; 32: 916-919
        • Sharma S.
        • Abubakar K.M.
        • Keszler M.
        Tidal volume in infants with congenital diaphragmatic hernia supported with conventional mechanical ventilation.
        Am J Perinatol. 2015; 32: 577-582
        • Keszler M.
        • Nassabeh-Montazami S.
        • Abubakar K.
        Evolution of tidal volume requirement during the first 3 weeks of life in infants <800 g ventilated with volume guarantee.
        Arch Dis Child Fetal Neonatal Ed. 2009; 94: F279-F282
        • Keszler M.
        Volume-targeted ventilation: one size does not fit all. Evidence-based recommendations for successful use.
        Arch Dis Child Fetal Neonatal Ed. 2018; 104: F108-F112
        • Keszler M.
        • Abubakar K.
        Volume-targeted ventilation.
        in: Keszler M. Suresh Gautham K. Assisted ventilation of the neonate: an evidence-based approach to neonatal respiratory care. 7th edition. Elsevier, Philadelphia2022
        • Cools F.
        • Offringa M.
        • Askie L.M.
        Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants.
        Cochrane Database Syst Rev. 2015; (CD000104)
        • Keszler M.
        • Donn S.M.
        • Bucciarelli R.L.
        • et al.
        Multicenter controlled trial comparing high-frequency jet ventilation and conventional mechanical ventilation in newborn infants with pulmonary interstitial emphysema.
        J Pediatr. 1991; 119: 85-93
        • Iscan B.
        • Duman N.
        • Tuzun F.
        • et al.
        Impact of volume guarantee on high-frequency oscillatory ventilation in preterm infants: a randomized crossover clinical trial.
        Neonatology. 2015; 108: 277-282
        • Belteki G.
        • Morley C.J.
        High-frequency oscillatory ventilation with volume guarantee: a single-centre experience.
        Arch Dis Child Fetal Neonatal Ed. 2019; 104: F384-F389
        • Enomoto M.
        • Keszler M.
        • Sakuma M.
        • et al.
        Effect of volume guarantee in preterm infants on high-frequency oscillatory ventilation: a pilot study.
        Am J Perinatol. 2017; 34: 26-30
        • Sindelar R.
        • McKinney R.L.
        • Wallstrom L.
        • et al.
        Proportional assist and neurally adjusted ventilation: clinical knowledge and future trials in newborn infants.
        Pediatr Pulmonol. 2021; 56: 1841-1849
        • Schulze A.
        • Rich W.
        • Schellenberg L.
        • et al.
        Effects of different gain settings during assisted mechanical ventilation using respiratory unloading in rabbits.
        Pediatr Res. 1998; 44: 132-138
        • Schulze A.
        • Gerhardt T.
        • Musante G.
        • et al.
        Proportional assist ventilation in low birth weight infants with acute respiratory disease: a comparison to assist/control and conventional mechanical ventilation.
        J Pediatr. 1999; 135: 339-344
        • Schulze A.
        • Rieger-Fackeldey E.
        • Gerhardt T.
        • et al.
        Randomized crossover comparison of proportional assist ventilation and patient-triggered ventilation in extremely low birth weight infants with evolving chronic lung disease.
        Neonatology. 2007; 92: 1-7
        • Shetty S.
        • Bhat P.
        • Hickey A.
        • et al.
        Proportional assist versus assist control ventilation in premature infants.
        Eur J Pediatr. 2016; 175: 57-61
        • Hunt K.A.
        • Dassios T.
        • Greenough A.
        Proportional assist ventilation (PAV) versus neurally adjusted ventilator assist (NAVA): effect on oxygenation in infants with evolving or established bronchopulmonary dysplasia.
        Eur J Pediatr. 2020; 179: 901-908
        • Firestone K.S.
        • Fisher S.
        • Reddy S.
        • et al.
        Effect of changing NAVA levels on peak inspiratory pressures and electrical activity of the diaphragm in premature neonates.
        J Perinatol. 2015; 35: 612-616
        • Nam S.K.
        • Lee J.
        • Jun Y.H.
        Neural feedback is insufficient in preterm infants during neurally adjusted ventilatory assist.
        Pediatr Pulmonol. 2019; 54: 1277-1283
        • Beck J.
        • Reilly M.
        • Grasselli G.
        • et al.
        Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants.
        Pediatr Res. 2009; 65: 663-668
        • Stein H.
        • Howard D.
        Neurally adjusted ventilatory assist in neonates weighing <1500 grams: a retrospective analysis.
        J Pediatr. 2012; 160: 786-789.e1
        • Lee J.
        • Kim H.S.
        • Sohn J.A.
        • et al.
        Randomized crossover study of neurally adjusted ventilatory assist in preterm infants.
        J Pediatr. 2012; 161: 808-813
        • Longhini F.
        • Ferrero F.
        • De Luca D.
        • et al.
        Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure.
        Neonatology. 2015; 107: 60-67
        • Shetty S.
        • Hunt K.
        • Peacock J.
        • et al.
        Crossover study of assist control ventilation and neurally adjusted ventilatory assist.
        Eur J Pediatr. 2017; 176: 509-513
        • Stein H.
        • Alosh H.
        • Ethington P.
        • et al.
        Prospective crossover comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams.
        J Perinatol. 2013; 33: 452-456
        • Kallio M.
        • Koskela U.
        • Peltoniemi O.
        • et al.
        Neurally adjusted ventilatory assist (NAVA) in preterm newborn infants with respiratory distress syndrome-a randomized controlled trial.
        Eur J Pediatr. 2016; 175: 1175-1183
        • Jung Y.H.
        • Kim H.S.
        • Lee J.
        • et al.
        Neurally adjusted ventilatory assist in preterm infants with established or evolving bronchopulmonary dysplasia on high-intensity mechanical ventilatory support: a single-center experience.
        Pediatr Crit Care Med. 2016; 17: 1142-1146
        • Lee J.
        • Kim H.S.
        • Jung Y.H.
        • et al.
        Neurally adjusted ventilatory assist for infants under prolonged ventilation.
        Pediatr Int. 2017; 59: 540-544
        • Rong X.
        • Liang F.
        • Li Y.J.
        • et al.
        Application of neurally adjusted ventilatory assist in premature neonates less than 1,500 grams with established or evolving bronchopulmonary dysplasia.
        Front Pediatr. 2020; 8: 110
        • McKinney R.L.
        • Keszler M.
        • Truog W.E.
        • et al.
        Multicenter experience with neurally adjusted ventilatory assist in infants with severe bronchopulmonary dysplasia.
        Am J Perinatol. 2021; 38: e162-e166
        • Daoud E.G.
        • Farag H.L.
        • Chatburn R.L.
        Airway pressure release ventilation: what do we know?.
        Respir Care. 2012; 57: 282-292
        • Lalgudi Ganesan S.
        • Jayashree M.
        • Chandra Singhi S.
        • et al.
        Airway pressure release ventilation in pediatric acute respiratory distress syndrome. A randomized controlled trial.
        Am J Respir Crit Care Med. 2018; 198: 1199-1207
        • Claure N.
        • Gerhardt T.
        • Hummler H.
        • et al.
        Computer-controlled minute ventilation in preterm infants undergoing mechanical ventilation.
        J Pediatr. 1997; 131: 910-913
        • Guthrie S.O.
        • Lynn C.
        • Lafleur B.J.
        • et al.
        A crossover analysis of mandatory minute ventilation compared to synchronized intermittent mandatory ventilation in neonates.
        J Perinatol. 2005; 25: 643-646
        • Burns K.E.
        • Lellouche F.
        • Lessard M.R.
        Automating the weaning process with advanced closed-loop systems.
        Intensive Care Med. 2008; 34: 1757-1765
        • Sturrock S.
        • Williams E.
        • Dassios T.
        • et al.
        Closed loop automated oxygen control in neonates: a review.
        Acta Paediatr. 2019; 109: 914-922
        • Dani C.
        Automated control of inspired oxygen (FiO2) in preterm infants: literature review.
        Pediatr Pulmonol. 2019; 54: 358-363
        • Maiwald C.A.
        • Niemarkt H.J.
        • Poets C.F.
        • et al.
        Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcome of extremely preterm infants: study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy.
        BMC Pediatr. 2019; 19: 363