Advertisement
Review Article| Volume 49, ISSUE 1, P243-265, March 2022

Pharmacologic Analgesia and Sedation in Neonates

  • Christopher McPherson
    Correspondence
    Corresponding author. Department of Pharmacy, St. Louis Children’s Hospital, 1 Children’s Place, St. Louis, MO 63110, USA.
    Affiliations
    Department of Pharmacy, St. Louis Children’s Hospital, 1 Children’s Place, St. Louis, MO 63110, USA

    Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
    Search for articles by this author
  • Ruth E. Grunau
    Affiliations
    Department of Pediatrics, University of British Columbia, F605B, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada

    BC Children’s Hospital Research Institute, 938 West 28th Avenue, Vancouver BC V5Z 4H4, Canada
    Search for articles by this author
Published:January 21, 2022DOI:https://doi.org/10.1016/j.clp.2021.11.014

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McNair C.
        • Campbell-Yeo M.
        • Johnston C.
        • et al.
        Nonpharmacologic management of pain during common needle puncture procedures in infants: current research evidence and practical considerations: an update.
        Clin Perinatol. 2019; 46: 709-730https://doi.org/10.1016/j.clp.2019.08.006
        • Anand K.J.S.
        Discovering pain in newborn infants.
        Anesthesiology. 2019; 131: 392-395https://doi.org/10.1097/ALN.0000000000002810
        • Volpe J.J.
        Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions.
        Pediatr Neurol. 2019; 95: 42-66https://doi.org/10.1016/j.pediatrneurol.2019.02.016
        • McPherson C.
        • Miller S.P.
        • El-Dib M.
        • et al.
        The influence of pain, agitation, and their management on the immature brain.
        Pediatr Res. 2020; https://doi.org/10.1038/s41390-019-0744-6
        • Chau C.M.Y.
        • Ranger M.
        • Bichin M.
        • et al.
        Hippocampus, amygdala, and thalamus volumes in very preterm children at 8 years: neonatal pain and genetic variation.
        Front Behav Neurosci. 2019; 13: 51https://doi.org/10.3389/fnbeh.2019.00051
        • Nunes A.S.
        • Kozhemiako N.
        • Hutcheon E.
        • et al.
        Atypical neuromagnetic resting activity associated with thalamic volume and cognitive outcome in very preterm children.
        Neuroimage Clin. 2020; 27: 102275https://doi.org/10.1016/j.nicl.2020.102275
        • Stevens B.
        • Yamada J.
        • Ohlsson A.
        • et al.
        Sucrose for analgesia in newborn infants undergoing painful procedures.
        Cochrane Database Syst Rev. 2016; (CD001069)https://doi.org/10.1002/14651858.CD001069.pub5
        • Lin J.C.
        • Strauss R.G.
        • Kulhavy J.C.
        • et al.
        Phlebotomy overdraw in the neonatal intensive care nursery.
        Pediatrics. 2000; 106: E19https://doi.org/10.1542/peds.106.2.e19
        • Pillai Riddell R.R.
        • Racine N.M.
        • Gennis H.G.
        • et al.
        Non-pharmacological management of infant and young child procedural pain.
        Cochrane Database Syst Rev. 2015; (CD006275)https://doi.org/10.1002/14651858.CD006275.pub3
        • Hatfield L.A.
        • Murphy N.
        • Karp K.
        • et al.
        A systematic review of behavioral and environmental interventions for procedural pain management in preterm infants.
        J Pediatr Nurs. 2019; 44: 22-30https://doi.org/10.1016/j.pedn.2018.10.004
        • Benoit B.
        • Campbell-Yeo M.
        • Johnston C.
        • et al.
        Staff nurse utilization of kangaroo care as an intervention for procedural pain in preterm infants.
        Adv Neonatal Care. 2016; 16: 229-238https://doi.org/10.1097/ANC.0000000000000262
        • Harrison D.
        • Larocque C.
        • Bueno M.
        • et al.
        Sweet solutions to reduce procedural pain in neonates: a meta-analysis.
        Pediatrics. 2017; 139: e20160955https://doi.org/10.1542/peds.2016-0955
        • Huang R.R.
        • Xie R.H.
        • Wen S.W.
        • et al.
        Sweet solutions for analgesia in neonates in China: a systematic review and meta-analysis.
        Can J Nurs Res. 2019; 51: 116-127https://doi.org/10.1177/0844562118803756
        • Taddio A.
        • Shah V.
        • Atenafu E.
        • et al.
        Influence of repeated painful procedures and sucrose analgesia on the development of hyperalgesia in newborn infants.
        Pain. 2009; 144: 43-48https://doi.org/10.1016/j.pain.2009.02.012
        • McPherson C.
        • Grunau R.E.
        Neonatal pain control and neurologic effects of anesthetics and sedatives in preterm infants.
        Clin Perinatol. 2014; 41: 209-227https://doi.org/10.1016/j.clp.2013.10.002
        • Tremblay S.
        • Ranger M.
        • Chau C.M.Y.
        • et al.
        Repeated exposure to sucrose for procedural pain in mouse pups leads to long-term widespread brain alterations.
        Pain. 2017; 158: 1586-1598https://doi.org/10.1097/j.pain.0000000000000961
        • Ranger M.
        • Tremblay S.
        • Chau C.M.Y.
        • et al.
        Adverse behavioral changes in adult mice following neonatal repeated exposure to pain and sucrose.
        Front Psychol. 2018; 9: 2394https://doi.org/10.3389/fpsyg.2018.02394
        • Johnston C.C.
        • Filion F.
        • Snider L.
        • et al.
        Routine sucrose analgesia during the first week of life in neonates younger than 31 weeks' postconceptional age.
        Pediatrics. 2002; 110: 523-528
        • Stevens B.
        • Yamada J.
        • Beyene J.
        • et al.
        Consistent management of repeated procedural pain with sucrose in preterm neonates: is it effective and safe for repeated use over time?.
        Clin J Pain. 2005; 21: 543-548https://doi.org/10.1097/01.ajp.0000149802.46864.e2
        • Schneider J.
        • Duerden E.G.
        • Guo T.
        • et al.
        Procedural pain and oral glucose in preterm neonates: brain development and sex-specific effects.
        Pain. 2018; 159: 515-525https://doi.org/10.1097/j.pain.0000000000001123
        • Stevens B.
        • Yamada J.
        • Campbell-Yeo M.
        • et al.
        The minimally effective dose of sucrose for procedural pain relief in neonates: a randomized controlled trial.
        BMC Pediatr. 2018; 18: 85https://doi.org/10.1186/s12887-018-1026-x
        • Bembich S.
        • Cont G.
        • Causin E.
        • et al.
        Infant analgesia with a combination of breast milk, glucose, or maternal holding.
        Pediatrics. 2018; 142: e20173416https://doi.org/10.1542/peds.2017-3416
        • Campbell-Yeo M.
        • Johnston C.C.
        • Benoit B.
        • et al.
        Sustained efficacy of kangaroo care for repeated painful procedures over neonatal intensive care unit hospitalization: a single-blind randomized controlled trial.
        Pain. 2019; 160: 2580-2588https://doi.org/10.1097/j.pain.0000000000001646
        • Kelly M.A.
        • Finer N.N.
        Nasotracheal intubation in the neonate: physiologic responses and effects of atropine and pancuronium.
        J Pediatr. 1984; 105: 303-309
        • Haubner L.Y.
        • Barry J.S.
        • Johnston L.C.
        • et al.
        Neonatal intubation performance: room for improvement in tertiary neonatal intensive care units.
        Resuscitation. 2013; 84: 1359-1364https://doi.org/10.1016/j.resuscitation.2013.03.014
        • Sauer C.W.
        • Kong J.Y.
        • Vaucher Y.E.
        • et al.
        Intubation attempts increase the risk for severe intraventricular hemorrhage in preterm infants-A retrospective cohort study.
        J Pediatr. 2016; 177: 108-113https://doi.org/10.1016/j.jpeds.2016.06.051
        • Wallenstein M.B.
        • Birnie K.L.
        • Arain Y.H.
        • et al.
        Failed endotracheal intubation and adverse outcomes among extremely low birth weight infants.
        J Perinatol. 2016; 36: 112-115https://doi.org/10.1038/jp.2015.158
        • Kumar P.
        • Denson S.E.
        • Mancuso T.J.
        Committee on fetus and newborn section on anesthesiology and pain medicine. Premedication for nonemergency endotracheal intubation in the neonate.
        Pediatrics. 2010; 125: 608-615https://doi.org/10.1542/peds.2009-2863
        • Le C.N.
        • Garey D.M.
        • Leone T.A.
        • et al.
        Impact of premedication on neonatal intubations by pediatric and neonatal trainees.
        J Perinatol. 2014; 34: 458-460https://doi.org/10.1038/jp.2014.32
        • Mari J.
        • Franczia P.
        • Margas W.
        • et al.
        International consensus is neededon premedication for non-emergency neonatal intubation after survey found wide-ranging policies and practices in 70 countries.
        Acta Paediatr. 2020; 109: 1369-1375https://doi.org/10.1111/apa.15119
        • Norman E.
        • Kindblom J.M.
        • Rane A.
        • et al.
        Individual variations in fentanyl pharmacokinetics and pharmacodynamics in preterm infants.
        Acta Paediatr. 2019; 108: 1441-1446https://doi.org/10.1111/apa.14744
        • Elmekkawi A.
        • Abdelgadir D.
        • Van Dyk J.
        • et al.
        Use of naloxone to minimize extubation failure after premedication for INSURE procedure in preterm neonates.
        J Neonatal Perinatal Med. 2016; 9: 363-370https://doi.org/10.3233/NPM-915141
        • Choong K.
        • AlFaleh K.
        • Doucette J.
        • et al.
        Remifentanil for endotracheal intubation in neonates: a randomised controlled trial.
        Arch Dis Child Fetal Neonatal Ed. 2010; 95: F80-F84https://doi.org/10.1136/adc.2009.167338
        • McCluskey S.V.
        • Graner K.K.
        • Kemp J.
        • et al.
        Stability of fentanyl 5 microg/mL diluted with 0.9% sodium chloride injection and stored in polypropylene syringes.
        Am J Health Syst Pharm. 2009; 66: 860-863https://doi.org/10.2146/ajhp080255
        • Lemyre B.
        • Doucette J.
        • Kalyn A.
        • et al.
        Morphine for elective endotracheal intubation in neonates: a randomized trial [ISRCTN43546373].
        BMC Pediatr. 2004; 4: 20https://doi.org/10.1186/1471-2431-4-20
        • Pereira e Silva Y.
        • Gomez R.S.
        • Marcatto Jde O.
        • et al.
        Morphine versus remifentanil for intubating preterm neonates.
        Arch Dis Child Fetal Neonatal Ed. 2007; 92: F293-F294https://doi.org/10.1136/adc.2006.105262
        • Altamimi M.I.
        • Choonara I.
        • Sammons H.
        Inter-individual variation in morphine clearance in children.
        Eur J Clin Pharmacol. 2015; 71: 649-655https://doi.org/10.1007/s00228-015-1843-x
        • Ghanta S.
        • Abdel-Latif M.E.
        • Lui K.
        • et al.
        Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Comparative study randomized controlled trial.
        Pediatrics. 2007; 119: e1248-e1255https://doi.org/10.1542/peds.2006-2708
        • Durrmeyer X.
        • Breinig S.
        • Claris O.
        • et al.
        Effect of atropine with propofol vs atropine with atracurium and sufentanil on oxygen desaturation in neonates requiring nonemergency intubation: a randomized clinical trial.
        JAMA. 2018; 319: 1790-1801https://doi.org/10.1001/jama.2018.3708
        • Allegaert K.
        • Peeters M.Y.
        • Verbesselt R.
        • et al.
        Inter-individual variability in propofol pharmacokinetics in preterm and term neonates..
        Br J Anaesth. 2007; 99: 864-870https://doi.org/10.1093/bja/aem294
        • Smits A.
        • Thewissen L.
        • Caicedo A.
        • et al.
        Propofol dose-finding to reach optimal effect for (Semi-)Elective intubation in neonates.
        J Pediatr. 2016; 179: 54-60.e9https://doi.org/10.1016/j.jpeds.2016.07.049
        • Simons S.H.
        • van der Lee R.
        • Reiss I.K.
        • et al.
        Clinical evaluation of propofol as sedative for endotracheal intubation in neonates.
        Acta Paediatr. 2013; 102: e487-e492https://doi.org/10.1111/apa.12367
        • de Kort E.H.M.
        • Prins S.A.
        • Reiss I.K.M.
        • et al.
        Propofol for endotracheal intubation in neonates: a dose-finding trial.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 489-495https://doi.org/10.1136/archdischild-2019-318474
        • de Kort E.H.M.
        • Twisk J.W.R.
        • van t Verlaat E.P.G.
        • et al.
        Propofol in neonates causes a dose-dependent profound and protracted decrease in blood pressure.
        Acta Paediatr. 2020; 109: 2539-2546https://doi.org/10.1111/apa.15282
        • Muniraman H.K.
        • Yaari J.
        • Hand I.
        Premedication use before nonemergent intubation in the newborn infant.
        Am J Perinatol. 2015; 32: 821-824https://doi.org/10.1055/s-0034-1543987
        • Roberts K.D.
        • Leone T.A.
        • Edwards W.H.
        • et al.
        Premedication for nonemergent neonatal intubations: a randomized, controlled trial comparing atropine and fentanyl to atropine, fentanyl, and mivacurium.
        Pediatrics. 2006; 118: 1583-1591https://doi.org/10.1542/peds.2006-0590
        • Ozawa Y.
        • Ades A.
        • Foglia E.E.
        • et al.
        Premedication with neuromuscular blockade and sedation during neonatal intubation is associated with fewer adverse events.
        J Perinatol. 2019; 39: 848-856https://doi.org/10.1038/s41372-019-0367-0
        • Barois J.
        • Tourneux P.
        Ketamine and atropine decrease pain for preterm newborn tracheal intubation in the delivery room: an observational pilot study.
        Acta Paediatr. 2013; 102: e534-e538https://doi.org/10.1111/apa.12413
        • Milesi C.
        • Baleine J.
        • Mura T.
        • et al.
        Nasal midazolam vs ketamine for neonatal intubation in the delivery room: a randomised trial.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103: F221-F226https://doi.org/10.1136/archdischild-2017-312808
        • Krajewski P.
        • Szpecht D.
        • Hozejowski R.
        Premedication practices for less invasive surfactant administration - results from a nationwide cohort study.
        J Matern Fetal Neonatal Med. 2020; : 1-5https://doi.org/10.1080/14767058.2020.1863365
        • Tauzin M.
        • Marchand-Martin L.
        • Lebeaux C.
        • et al.
        Neurodevelopmental outcomes after premedication with atropine/propofol vs atropine/atracurium/sufentanil for neonatal intubation: 2-year follow-up of a randomized clinical trial.
        J Pediatr. 2020; https://doi.org/10.1016/j.jpeds.2020.12.001
        • Batton D.G.
        • Barrington K.J.
        • Wallman C.
        • American Academy of Pediatrics Committee on Fetus and Newborn
        • American Academy of Pediatrics Section on Surgery
        • Canadian Paediatric Society Fetus and Newborn Committee
        Prevention and management of pain in the neonate: an update. Practice guideline.
        Pediatrics. 2006; 118: 2231-2241https://doi.org/10.1542/peds.2006-2277
        • Ancora G.
        • Lago P.
        • Garetti E.
        • et al.
        Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation.
        Acta Paediatr. 2019; 108: 208-217https://doi.org/10.1111/apa.14606
        • Gelinas C.
        • Fortier M.
        • Viens C.
        • et al.
        Pain assessment and management in critically ill intubated patients: a retrospective study..
        Am J Crit Care. 2004; 13: 126-135
        • Quinn M.W.
        • de Boer R.C.
        • Ansari N.
        • et al.
        Stress response and mode of ventilation in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 1998; 78: F195-F198
        • Longhini F.
        • Ferrero F.
        • De Luca D.
        • et al.
        Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure.
        Neonatology. 2015; 107: 60-67https://doi.org/10.1159/000367886
        • Jacqz-Aigrain E.
        • Daoud P.
        • Burtin P.
        • et al.
        Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies.
        Lancet. 1994; 344: 646-650
        • van Straaten H.L.
        • Rademaker C.M.
        • de Vries L.S.
        Comparison of the effect of midazolam or vecuronium on blood pressure and cerebral blood flow velocity in the premature newborn.
        Dev Pharmacol Ther. 1992; 19: 191-195
        • Anand K.J.
        • Barton B.A.
        • McIntosh N.
        • et al.
        Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial. Neonatal outcome and prolonged analgesia in neonates.
        Arch Pediatr Adolesc Med. 1999; 153: 331-338
        • Durrmeyer X.
        • Vutskits L.
        • Anand K.J.
        • et al.
        Use of analgesic and sedative drugs in the NICU: integrating clinical trials and laboratory data. Review.
        Pediatr Res. 2010; 67: 117-127
        • Duerden E.G.
        • Guo T.
        • Dodbiba L.
        • et al.
        Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants.
        Ann Neurol. 2016; 79: 548-559https://doi.org/10.1002/ana.24601
        • Paqueron X.
        • Lumbroso A.
        • Mergoni P.
        • et al.
        Is morphine-induced sedation synonymous with analgesia during intravenous morphine titration?.
        Br J Anaesth. 2002; 89: 697-701
        • Dyke M.P.
        • Kohan R.
        • Evans S.
        Morphine increases synchronous ventilation in preterm infants.
        J Paediatr Child Health. 1995; 31: 176-179
        • Simons S.H.
        • van Dijk M.
        • van Lingen R.A.
        • et al.
        Randomised controlled trial evaluating effects of morphine on plasma adrenaline/noradrenaline concentrations in newborns.
        Arch Dis Child Fetal Neonatal Ed. 2005; 90: F36-F40https://doi.org/10.1136/adc.2003.046425
        • Anand K.J.
        • Hall R.W.
        • Desai N.
        • et al.
        Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial.
        Lancet. 2004; 363: 1673-1682https://doi.org/10.1016/S0140-6736(04)16251-X
        • Simons S.H.
        • van Dijk M.
        • van Lingen R.A.
        • et al.
        Routine morphine infusion in preterm newborns who received ventilatory support: a randomized controlled trial.
        JAMA. 2003; 290: 2419-2427https://doi.org/10.1001/jama.290.18.2419
        • Bhandari V.
        • Bergqvist L.L.
        • Kronsberg S.S.
        • et al.
        Morphine administration and short-term pulmonary outcomes among ventilated preterm infants.
        Pediatrics. 2005; 116: 352-359https://doi.org/10.1542/peds.2004-2123
        • Menon G.
        • Boyle E.M.
        • Bergqvist L.L.
        • et al.
        Morphine analgesia and gastrointestinal morbidity in preterm infants: secondary results from the NEOPAIN trial. Multicenter Study Randomized Controlled Trial.
        Arch Dis Child Fetal Neonatal Ed. 2008; 93: F362-F367https://doi.org/10.1136/adc.2007.119297
        • Saarenmaa E.
        • Huttunen P.
        • Leppaluoto J.
        • et al.
        Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: a randomized trial.
        J Pediatr. 1999; 134: 144-150
        • Hamon I.
        • Hascoet J.M.
        • Debbiche A.
        • et al.
        Effects of fentanyl administration on general and cerebral haemodynamics in sick newborn infants.
        Acta Paediatr. 1996; 85: 361-365
        • Lago P.
        • Benini F.
        • Agosto C.
        • et al.
        Randomised controlled trial of low dose fentanyl infusion in preterm infants with hyaline membrane disease.
        Arch Dis Child Fetal Neonatal Ed. 1998; 79: F194-F197
        • Ancora G.
        • Lago P.
        • Garetti E.
        • et al.
        Efficacy and safety of continuous infusion of fentanyl for pain control in preterm newborns on mechanical ventilation.
        J Pediatr. 2013; 163: 645-651.e1https://doi.org/10.1016/j.jpeds.2013.02.039
        • de Graaf J.
        • van Lingen R.A.
        • Simons S.H.
        • et al.
        Long-term effects of routine morphine infusion in mechanically ventilated neonates on children’s functioning: five-year follow-up of a randomized controlled trial..
        Pain. 2011; 152: 1391-1397https://doi.org/10.1016/j.pain.2011.02.017
        • de Graaf J.
        • van Lingen R.A.
        • Valkenburg A.J.
        • et al.
        Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age?.
        Pain. 2013; 154: 449-458https://doi.org/10.1016/j.pain.2012.12.006
        • Steinhorn R.
        • McPherson C.
        • Anderson P.J.
        • et al.
        Neonatal morphine exposure in very preterm infants-cerebral development and outcomes.
        J Pediatr. 2015; 166: 1200-1207.e4https://doi.org/10.1016/j.jpeds.2015.02.012
        • Zwicker J.G.
        • Miller S.P.
        • Grunau R.E.
        • et al.
        Smaller cerebellar growth and poorer neurodevelopmental outcomes in very preterm infants exposed to neonatal morphine.
        J Pediatr. 2016; 172: 81-87.e2https://doi.org/10.1016/j.jpeds.2015.12.024
        • Chau C.M.Y.
        • Ross C.J.D.
        • Chau V.
        • et al.
        Morphine biotransformation genes and neonatal clinical factors predicted behaviour problems in very preterm children at 18months.
        EBioMedicine. 2019; 40: 655-662https://doi.org/10.1016/j.ebiom.2019.01.042
        • Ranger M.
        • Zwicker J.G.
        • Chau C.M.
        • et al.
        Neonatal pain and infection relate to smaller cerebellum in very preterm children at school age.
        J Pediatr. 2015; 167: 292-298.e1https://doi.org/10.1016/j.jpeds.2015.04.055
        • Saarenmaa E.
        • Neuvonen P.J.
        • Fellman V.
        Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants.
        J Pediatr. 2000; 136: 767-770
        • Ancora G.
        • Lago P.
        • Garetti E.
        • et al.
        Follow-up at the corrected age of 24 months of preterm newborns receiving continuous infusion of fentanyl for pain control during mechanical ventilation.
        Pain. 2017; 158: 840-845https://doi.org/10.1097/j.pain.0000000000000839
        • McPherson C.
        • Haslam M.
        • Pineda R.
        • et al.
        Brain injury and development in preterm infants exposed to fentanyl.
        Ann Pharmacother. 2015; 49: 1291-1297https://doi.org/10.1177/1060028015606732
        • O'Mara K.
        • Gal P.
        • Wimmer J.
        • et al.
        Dexmedetomidine versus standard therapy with fentanyl for sedation in mechanically ventilated premature neonates.
        J Pediatr Pharmacol Ther. 2012; 17: 252-262https://doi.org/10.5863/1551-6776-17.3.252
        • Laudenbach V.
        • Mantz J.
        • Lagercrantz H.
        • et al.
        Effects of alpha(2)-adrenoceptor agonists on perinatal excitotoxic brain injury: comparison of clonidine and dexmedetomidine..
        Anesthesiology. 2002; 96: 134-141
        • Chay P.C.
        • Duffy B.J.
        • Walker J.S.
        Pharmacokinetic-pharmacodynamic relationships of morphine in neonates.
        Clin Pharmacol Ther. 1992; 51: 334-342
        • Hartley R.
        • Green M.
        • Quinn M.
        • et al.
        Pharmacokinetics of morphine infusion in premature neonates.
        Arch Dis Child. 1993; 69: 55-58
        • Allegaert K.
        • Simons S.H.P.
        • Tibboel D.
        • et al.
        Non-maturational covariates for dynamic systems pharmacology models in neonates, infants, and children: filling the gaps beyond developmental pharmacology.
        Eur J Pharm Sci. 2017; 109S: S27-S31https://doi.org/10.1016/j.ejps.2017.05.023
        • Matic M.
        • Simons S.H.
        • van Lingen R.A.
        • et al.
        Rescue morphine in mechanically ventilated newborns associated with combined OPRM1 and COMT genotype.
        Pharmacogenomics. 2014; 15: 1287-1295https://doi.org/10.2217/pgs.14.100
        • Völler S.
        • Flint R.B.
        • Andriessen P.
        • et al.
        Rapidly maturing fentanyl clearance in preterm neonates.
        Arch Dis Child Fetal Neonatal Ed. 2019; 104: F598-F603https://doi.org/10.1136/archdischild-2018-315920
        • Johnston C.C.
        • Stevens B.J.
        • Franck L.S.
        • et al.
        Factors explaining lack of response to heel stick in preterm newborns.
        J Obstet Gynecol Neonatal Nurs. 1999; 28: 587-594https://doi.org/10.1111/j.1552-6909.1999.tb02167.x
        • Hartley C.
        • Moultrie F.
        • Hoskin A.
        • et al.
        Analgesic efficacy and safety of morphine in the Procedural Pain in Premature Infants (Poppi) study: randomised placebo-controlled trial.
        Lancet. 2018; 392: 2595-2605https://doi.org/10.1016/S0140-6736(18)31813-0
        • Vinks A.A.
        • Punt N.C.
        • Menke F.
        • et al.
        Electronic health record-embedded decision support platform for morphine precision dosing in neonates.
        Clin Pharmacol Ther. 2020; 107: 186-194https://doi.org/10.1002/cpt.1684
        • Chrysostomou C.
        • Schulman S.R.
        • Herrera Castellanos M.
        • et al.
        A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates.
        J Pediatr. 2014; 164 (e1–3): 276-282https://doi.org/10.1016/j.jpeds.2013.10.002
        • Jacobs S.E.
        • Berg M.
        • Hunt R.
        • et al.
        Cooling for newborns with hypoxic ischaemic encephalopathy.
        Cochrane Database Syst Rev. 2013; (CD003311)https://doi.org/10.1002/14651858.CD003311.pub3
        • Davidson J.O.
        • Fraser M.
        • Naylor A.S.
        • et al.
        Effect of cerebral hypothermia on cortisol and adrenocorticotropic hormone responses after umbilical cord occlusion in preterm fetal sheep.
        Pediatr Res. 2008; 63: 51-55https://doi.org/10.1203/PDR.0b013e31815b8eb4
        • Hoffman K.
        • Bromster T.
        • Hakansson S.
        • et al.
        Monitoring of pain and stress in an infant with asphyxia during induced hypothermia: a case report.
        Adv Neonatal Care. 2013; 13: 252-261https://doi.org/10.1097/ANC.0b013e31829d8baf
        • Montaldo P.
        • Vakharia A.
        • Ivain P.
        • et al.
        Pre-emptive opioid sedation during therapeutic hypothermia.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 108-109https://doi.org/10.1136/archdischild-2019-317050
        • Angeles D.M.
        • Wycliffe N.
        • Michelson D.
        • et al.
        Use of opioids in asphyxiated term neonates: effects on neuroimaging and clinical outcome.
        Pediatr Res. 2005; 57: 873-878https://doi.org/10.1203/01.PDR.0000157676.45088.8C
        • Simbruner G.
        • Mittal R.A.
        • Rohlmann F.
        • et al.
        neo.nEURO.network trial participants. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT.
        Pediatrics. 2010; 126: e771-e778https://doi.org/10.1542/peds.2009-2441
        • Liow N.
        • Montaldo P.
        • Lally P.J.
        • et al.
        Preemptive morphine during therapeutic hypothermia after neonatal encephalopathy: a secondary analysis.
        Ther Hypothermia Temp Manag. 2020; 10: 45-52https://doi.org/10.1089/ther.2018.0052
        • Gundersen J.K.
        • Chakkarapani E.
        • Jary S.
        • et al.
        Morphine and fentanyl exposure during therapeutic hypothermia does not impair neurodevelopment.
        EClinicalMedicine. 2021;
        • Wassink G.
        • Lear C.A.
        • Gunn K.C.
        • et al.
        Analgesics, sedatives, anticonvulsant drugs, and the cooled brain.
        Semin Fetal Neonatal Med. 2015; 20: 109-114https://doi.org/10.1016/j.siny.2014.10.003
        • Dean J.M.
        • George S.
        • Naylor A.S.
        • et al.
        Partial neuroprotection with low-dose infusion of the alpha2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep.
        Neuropharmacology. 2008; 55: 166-174https://doi.org/10.1016/j.neuropharm.2008.05.009
        • Dahmani S.
        • Paris A.
        • Jannier V.
        • et al.
        Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors..
        Anesthesiology. 2008; 108: 457-466https://doi.org/10.1097/ALN.0b013e318164ca81
        • Ma D.
        • Hossain M.
        • Rajakumaraswamy N.
        • et al.
        Dexmedetomidine produces its neuroprotective effect via the alpha 2A-adrenoceptor subtype.
        Eur J Pharmacol. 2004; 502: 87-97https://doi.org/10.1016/j.ejphar.2004.08.044
        • Callaway C.W.
        • Elmer J.
        • Guyette F.X.
        • et al.
        Dexmedetomidine reduces shivering during mild hypothermia in waking subjects.
        PLoS One. 2015; 10: e0129709https://doi.org/10.1371/journal.pone.0129709
        • O'Mara K.
        • Weiss M.D.
        Dexmedetomidine for sedation of neonates with HIE undergoing therapeutic hypothermia: a single-center experience.
        AJP Rep. 2018; 8: e168-e173https://doi.org/10.1055/s-0038-1669938
        • Cosnahan A.S.
        • Angert R.M.
        • Jano E.
        • et al.
        Dexmedetomidine versus intermittent morphine for sedation of neonates with encephalopathy undergoing therapeutic hypothermia.
        J Perinatol. 2021; https://doi.org/10.1038/s41372-021-00998-8
        • O'Dea M.
        • Sweetman D.
        • Bonifacio S.L.
        • et al.
        Management of multi organ dysfunction in neonatal encephalopathy.
        Front Pediatr. 2020; 8: 239https://doi.org/10.3389/fped.2020.00239
        • Smits A.
        • Annaert P.
        • Van Cruchten S.
        • et al.
        A physiology-based pharmacokinetic framework to support drug development and dose precision during therapeutic hypothermia in neonates.
        Front Pharmacol. 2020; 11: 587https://doi.org/10.3389/fphar.2020.00587
        • Favie L.M.A.
        • Groenendaal F.
        • van den Broek M.P.H.
        • et al.
        Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia.
        PLoS One. 2019; 14: e0211910https://doi.org/10.1371/journal.pone.0211910
        • Frymoyer A.
        • Bonifacio S.L.
        • Drover D.R.
        • et al.
        Decreased morphine clearance in neonates with hypoxic ischemic encephalopathy receiving hypothermia.
        J Clin Pharmacol. 2017; 57: 64-76https://doi.org/10.1002/jcph.775
        • Hahn D.
        • Emoto C.
        • Euteneuer J.C.
        • et al.
        Influence of OCT1 ontogeny and genetic variation on morphine disposition in critically ill neonates: lessons from PBPK modeling and clinical study.
        Clin Pharmacol Ther. 2019; 105: 761-768https://doi.org/10.1002/cpt.1249
        • Ezzati M.
        • Broad K.
        • Kawano G.
        • et al.
        Pharmacokinetics of dexmedetomidine combined with therapeutic hypothermia in a piglet asphyxia model.
        Acta Anaesthesiol Scand. 2014; 58: 733-742https://doi.org/10.1111/aas.12318
        • McAdams R.M.
        • Pak D.
        • Lalovic B.
        • et al.
        Dexmedetomidine pharmacokinetics in neonates with hypoxic-ischemic encephalopathy receiving hypothermia.
        Anesthesiol Res Pract. 2020; 2020: 2582965