Advertisement
Review Article| Volume 49, ISSUE 1, P55-72, March 2022

Advances in Understanding the Mechanism of Transitional Neonatal Hypoglycemia and Implications for Management

  • Diana L. Stanescu
    Affiliations
    Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
  • Charles A. Stanley
    Correspondence
    Corresponding author.
    Affiliations
    Division of Endocrinology, Department of Pediatrics, The Childrens Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
    Search for articles by this author
Published:January 21, 2022DOI:https://doi.org/10.1016/j.clp.2021.11.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pagliara A.S.
        • Karl I.E.
        • Haymond M.
        • et al.
        Hypoglycemia in infancy and childhood. I.
        J Pediatr. 1973; 82: 365-379
        • Cornblath M.
        • Pildes R.S.
        • Schwartz R.
        Hypoglycemia in infancy and childhood.
        J Pediatr. 1973; 83: 692-693
        • Raivio K.
        • Hallman N.
        Hypoglycemia in infancy and childhood.
        J Pediatr. 1973; 83: 693-697
        • Adamkin D.H.
        • Polin R.A.
        Imperfect advice: neonatal hypoglycemia.
        J Pediatr. 2016; 176: 195-196
        • Adamkin D.H.
        • Committee on Fetus and Newborn
        Postnatal glucose homeostasis in late-preterm and term infants.
        Pediatrics. 2011; 127: 575-579
        • Thornton P.S.
        • Stanley C.A.
        • De Leon D.D.
        • et al.
        Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent hypoglycemia in neonates, infants, and children.
        J Pediatr. 2015; 167: 238-245
        • Cornblath M.
        • Hawdon J.M.
        • Williams A.F.
        • et al.
        Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds.
        Pediatrics. 2000; 105: 1141-1145
        • Cryer P.E.
        The barrier of hypoglycemia in diabetes.
        Diabetes. 2008; 57: 3169-3176
        • Cryer P.E.
        • Axelrod L.
        • Grossman A.B.
        • et al.
        Evaluation and management of adult hypoglycemic disorders: an endocrine Society clinical practice guideline.
        J Clin Endocrinol Metab. 2009; 94: 709-728
        • Cryer P.E.
        Mechanisms of hypoglycemia-associated autonomic failure in diabetes.
        N Engl J Med. 2013; 369: 362-372
        • Kaiser J.R.
        • Bai S.
        • Gibson N.
        • et al.
        Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study.
        JAMA Pediatr. 2015; 169: 913-921
        • McKinlay C.J.D.
        • Alsweiler J.M.
        • Anstice N.S.
        • et al.
        Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 Years.
        JAMA Pediatr. 2017; 171: 972-983
        • Harris D.L.
        • Weston P.J.
        • Williams C.E.
        • et al.
        Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia.
        J Pediatr. 2011; 159: 755-760
        • Desmond M.M.
        • Hild J.R.
        • Gast J.H.
        The glycemic response of the newborn infant to epinephrine administration: a preliminary report.
        J Pediatr. 1950; 37: 341-350
        • McQuarrie I.
        Idiopathic spontaneously occurring hypoglycemia in infants; clinical significance of problem and treatment.
        AMA Am J Dis Child. 1954; 87: 399-428
        • Collins J.E.
        • Leonard J.V.
        • Teale D.
        • et al.
        Hyperinsulinaemic hypoglycaemia in small for dates babies.
        Arch Dis Child. 1990; 65: 1118-1120
        • Hoe F.M.
        • Thornton P.S.
        • Wanner L.A.
        • et al.
        Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism.
        J Pediatr. 2006; 148: 207-212
        • Stanley C.A.
        • Rozance P.J.
        • Thornton P.S.
        • et al.
        Re-evaluating "transitional neonatal hypoglycemia": mechanism and implications for management.
        J Pediatr. 2015; 166: 1520-1525
        • Harris D.L.
        • Weston P.J.
        • Gamble G.D.
        • et al.
        Glucose profiles in healthy term infants in the first 5 days: the glucose in well babies (GLOW) Study.
        J Pediatr. 2020; 223: 34-41
        • Harris D.L.
        • Weston P.J.
        • Harding J.E.
        Alternative cerebral fuels in the first five days in healthy term infants: the glucose in well babies (GLOW) Study.
        J Pediatr. 2021; 231: 81-86
        • Pagliara A.S.
        • Karl I.E.
        • Haymond M.
        • et al.
        Hypoglycemia in infancy and childhood. II.
        J Pediatr. 1973; 82: 558-577
        • Blum B.
        • Hrvatin S.
        • Schuetz C.
        • et al.
        Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3.
        Nat Biotechnol. 2012; 30: 261-264
        • Hrvatin S.
        • O'Donnell C.W.
        • Deng F.
        • et al.
        Differentiated human stem cells resemble fetal, not adult, beta cells.
        Proc Natl Acad Sci U S A. 2014; 111: 3038-3043
        • Thorrez L.
        • Laudadio I.
        • Van Deun K.
        • et al.
        Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation.
        Genome Res. 2011; 21: 95-105
        • Weinhaus A.J.
        • Poronnik P.
        • Cook D.I.
        • et al.
        Insulin secretagogues, but not glucose, stimulate an increase in [Ca2+]i in the fetal rat beta-cell.
        Diabetes. 1995; 44: 118-124
        • Rorsman P.
        • Arkhammar P.
        • Bokvist K.
        • et al.
        Failure of glucose to elicit a normal secretory response in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels.
        Proc Natl Acad Sci U S A. 1989; 86: 4505-4509
        • Huang C.
        • Walker E.M.
        • Dadi P.K.
        • et al.
        Synaptotagmin 4 regulates pancreatic beta cell maturation by modulating the Ca(2+) sensitivity of insulin secretion vesicles.
        Dev Cell. 2018; 45: 347-361
        • Yang J.
        • Hammoud B.
        • Li C.
        • et al.
        Decreased KATP channel activity contributes to the low glucose threshold for insulin secretion of rat neonatal islets.
        Endocrinology. 2021; 162: bqab121
        • Chen P.C.
        • Kryukova Y.N.
        • Shyng S.L.
        Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA).
        J Biol Chem. 2013; 288: 34098-34109
        • Park S.H.
        • Ryu S.Y.
        • Yu W.J.
        • et al.
        Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic beta-cells.
        Proc Natl Acad Sci U S A. 2013; 110: 12673-12678
        • Srivastava S.
        • Li Z.
        • Soomro I.
        • et al.
        Regulation of KATP channel trafficking in pancreatic beta-cells by protein histidine phosphorylation.
        Diabetes. 2018; 67: 849-860
        • Polonsky K.S.
        Lilly Lecture 1994. The beta-cell in diabetes: from molecular genetics to clinical research.
        Diabetes. 1995; 44: 705-717
        • Haliyur R.
        • Tong X.
        • Sanyoura M.
        • et al.
        Human islets expressing HNF1A variant have defective beta cell transcriptional regulatory networks.
        J Clin Invest. 2019; 129: 246-251
        • Stanley C.A.
        Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders.
        J Clin Endocrinol Metab. 2016; 101: 815-826
      1. Yang J, Hammoud B, Ridler A, et al. Postnatal activation of hypoxia pathway disrupts β-cell functional maturation (in preparation 2021).

        • Puri S.
        • Garcia-Nunez A.
        • Hebrok M.
        • et al.
        Elimination of von Hippel-Lindau function perturbs pancreas endocrine homeostasis in mice.
        PLoS One. 2013; 8: e72213
        • Harris D.L.
        • Weston P.J.
        • Signal M.
        • et al.
        Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2013; 382: 2077-2083
        • Cornblath M.
        • Reisner S.H.
        Blood glucose in the neonate and its clinical significance.
        N Engl J Med. 1965; 273: 378-381