Advertisement
Review Article| Volume 48, ISSUE 4, P711-724, December 2021

Download started.

Ok

Nasal Continuous Positive Airway Pressure and High-Flow Nasal Cannula Today

  • Carlo Dani
    Affiliations
    Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy

    Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
    Search for articles by this author
Published:October 02, 2021DOI:https://doi.org/10.1016/j.clp.2021.07.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012.
        JAMA. 2015; 314: 1039-1051
        • Jensen A.
        • Schmidt B.
        Epidemiology of bronchopulmonary dysplasia.
        Birth Defects Res A Clin Mol Teratol. 2014; 100: 145-157
        • Lapcharoensap W.
        • Gage S.C.
        • Kan P.
        • et al.
        Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort.
        JAMA Pediatr. 2015; 169: e143676
        • Dreyfuss D.
        • Saumon G.
        Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.
        Am Rev Respir Dis. 1993; 148: 1194-1203
        • Tsuchida S.
        • Engelberts D.
        • Peltekova V.
        • et al.
        Atelectasis causes alveolar injury in nonatelectatic lung regions.
        Am J Respir Crit Care Med. 2006; 174: 279-289
        • Davis J.M.
        • Dickerson B.
        • Metlay L.
        • et al.
        Differential effects of oxygen and barotrauma on lung injury in the neonatal piglet.
        Pediatr Pulmonol. 1991; 10: 157-163
        • Walsh M.C.
        • Morris B.H.
        • Wrage L.A.
        • et al.
        Extremely low birth weight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes.
        J Pediatr. 2005; 146: 798-804
        • Zhang H.
        • Dysart K.
        • Kendrick D.E.
        • et al.
        Prolonged respiratory support of any type impacts outcomes of extremely low birth weight infants.
        Pediatr Pulmonol. 2018; 53: 1447-1455
        • D'Apremont I.
        • Marshall G.
        • Musalem C.
        • et al.
        Trends in perinatal practices and neonatal outcomes of very low birth weight infants during a 16-year period at NEOCOSUR centers.
        J Pediatr. 2020; 225: 44-50.e1
        • Habas F.
        • Durand S.
        • Milesi C.
        • et al.
        15-year trends in respiratory care of extremely preterm infants: contributing factors and consequences on health and growth during hospitalization.
        Pediatr Pulmonol. 2020; 55: 1946-1954
        • Petrillo F.
        • Gizzi C.
        • Maffei G.
        • et al.
        Neonatal respiratory support strategies for the management of extremely low gestational age infants: an Italian survey.
        Ital J Pediatr. 2019; 45: 44
        • Gregory G.A.
        • Kitterman J.A.
        • Phibbs R.H.
        • et al.
        Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure.
        N Engl J Med. 1971; 284: 1333-1340
        • Gupta S.
        • Donn S.M.
        Continuous positive airway pressure: physiology and comparison of devices.
        Semin Fetal Neonatal Med. 2016; 21: 204-211
        • Ekhaguere O.
        • Patel S.
        • Kirpalani H.
        Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure before and after invasive ventilatory support.
        Clin Perinatol. 2019; 46: 517-536
        • Hammer J.
        Nasal CPAP in preterm infants: does it work and how?.
        Intensive Care Med. 2001; 27: 1689-1691
        • Lee K.S.
        • Dunn F.M.
        A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation.
        Biol Neonate. 1998; 73: 69-75
        • Pillow J.J.
        • Hillman N.
        • Moss T.J.
        • et al.
        Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs.
        Am J Respir Crit Care Med. 2007; 176: 63-69
        • Klausner J.F.
        • Lee Ay
        • Hutchinson A.A.
        Decreased imposed work with a new nasal continuous positive airway pressure device.
        Pediatr Pulmonol. 1996; 22: 188-194
        • Pandit P.B.
        • Courtney S.E.
        • Pyon K.H.
        • et al.
        Work of breathing during constant- and variable-flow nasal continuous positive airway pressure in preterm neonates.
        Pediatrics. 2001; 108: 682-685
        • Courtney S.E.
        • Pyon K.H.
        • Saslow J.G.
        • et al.
        Lung recruitment and breathing pattern during variable versus continuous flow nasal continuous positive airway pressure in premature infants: an evaluation of three devices.
        Pediatrics. 2001; 107: 304-308
        • Courtney S.E.
        • Aghai Z.H.
        • et al.
        Work of breathing (WOB) during nasal continuous positive airway pressure (NCPAP): a pilot study of bubble vs. variable-flow (VF) NCPAP.
        J Perinatol. 2003; 53: 2039
        • Liptsen E.
        • Aghai Z.H.
        • Pyon K.H.
        • et al.
        Work of breathing during nasal continuous positive airway pressure in preterm infants: a comparison of bubble vs variable-flow devices.
        J Perinatol. 2005; 25: 453-458
        • Kahn D.J.
        • Courtney S.E.
        • Steele A.M.
        • et al.
        Unpredictability of delivered bubble nasal continuous positive airway pressure role of bias flow magnitude and nares-prong air leaks.
        Pediatr Res. 2007; 62: 343-347
        • De Paoli A.G.
        • Davis P.G.
        • Faber B.
        Devices and pressure sources for administration of nasal continuous positive airway pressure in preterm neonates.
        Cochrane Database Syst Rev. 2008; 23 (CD002977)
        • Sharma D.
        • Murki S.
        • Maram S.
        • et al.
        Comparison of delivered distending pressures in the oropharynx in preterm infant on bubble CPAP and on three different nasal interfaces.
        Pediatr Pulmonol. 2020; 55: 1631-1639
        • Singh N.
        • McNally M.J.
        • Darnall R.A.
        Does the RAM cannula provide continuous positive airway pressure as effectively as the Hudson prongs in preterm neonates?.
        Am J Perinatol. 2019; 36: 849-854
        • Green E.A.
        • Dawson J.A.
        • Davis P.G.
        • et al.
        Assessment of resistance of nasal continuous positive airway pressure interfaces.
        Arch Dis Child Fetal Neonatal Ed. 2019; 104: F535-F539
        • Kieran E.A.
        • Twomey A.R.
        • Molloy E.J.
        • et al.
        Randomized trial of prongs or mask for nasal continuous positive airway pressure in preterm infants.
        Pediatrics. 2012; 130: e1170-e1176
        • Goel S.
        • Mondkar J.
        • Panchal H.
        • et al.
        Nasal mask versus nasal prongs for delivering nasal continuous positive airway pressure in preterm infants with respiratory distress: a randomized controlled trial.
        Indian Pediatr. 2015; 52: 1035-1040
        • Jasani B.
        • Ismail A.
        • Rao S.
        • et al.
        Effectiveness and safety of nasal mask versus binasal prongs for providing continuous positive airway pressure in preterm infants: a systematic review and meta-analysis.
        Pediatr Pulmonol. 2018; 53: 987-992
        • Wright C.J.
        • Polin R.A.
        • Kirpalani H.
        Continuous positive airway pressure to prevent neonatal lung injury: how did we get here, and how do we improve?.
        J Pediatr. 2016; 173: 17-24.e2
        • Rocha G.
        • Flor-de-Lima F.
        • Proenca E.
        • et al.
        Failure of early nasal continuous positive airway pressure in preterm infants of 26 to 30 weeks gestation.
        J Perinatol. 2013; 33: 297-301
        • De Jaegere A.P.
        • van der Lee J.H.
        • Cante C.
        • et al.
        Early prediction of nasal continuous positive airway pressure failure in preterm infants less than 30 weeks gestation.
        Acta Paediatr. 2012; 101: 374-379
        • Permatahati W.I.
        • Setyati A.
        • Haksari E.L.
        Predictor factors of continuous positive airway pressure failure in preterm infants with respiratory distress.
        Glob Pediatr Health. 2021; 8 (2333794X211007464)
        • Multicenter Study Collaborative Group for Evaluation of Outcomes in Very Low Birth Weight Infants
        Failure of non-invasive continuous positive airway pressure as the initial respiratory support in very preterm infants: a multicenter prospective cohort study.
        Zhonghua Er Ke Za Zhi. 2021; 59: 273-279
        • Gulczyńska E.
        • Szczapa T.
        • Hożejowski R.
        • et al.
        Fraction of inspired oxygen as a predictor of CPAP failure in preterm infants with respiratory distress syndrome: a prospective multicenter study.
        Neonatology. 2019; 116: 171-178
        • Hall R.T.
        • Rhodes P.G.
        Pneumothorax and pneumomediastinum in infants with idiopathic respiratory distress syndrome receiving continuous positive airway pressure.
        Pediatrics. 1975; 55: 493-496
        • Morley C.
        Continuous distending pressure.
        Arch Dis Child Fetal Neonatal Ed. 1999; 81: F152-F156
        • Ho J.J.
        • Subramaniam P.
        • Davis P.G.
        Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants.
        Cochrane Database Syst Rev. 2020; 10 (CD002271)
        • Jaile J.C.
        • Levin T.
        • Wung J.T.
        • et al.
        Benign gaseous distension of the bowel in premature infants treated with nasal continuous airway pressure: a study of contributing factors.
        AJR Am J Roentgenol. 1992; 158: 125-127
        • Cresi F.
        • Maggiora E.
        • Borgione S.M.
        • et al.
        Enteral nutrition tolerance and respiratory support (entares) study in preterm infants: study protocol for a randomized controlled trial.
        Trials. 2019; 20: 67
        • Guimarães A.R.
        • Rocha G.
        • Rodrigues M.
        • et al.
        Nasal CPAP complications in very low birth weight preterm infants.
        J Neonatal Perinatal Med. 2020; 13: 197-206
        • Fischer C.
        • Bertelle V.
        • Hohlfeld J.
        • et al.
        Nasal trauma due to continuous positive airway pressure in neonates.
        Arch Dis Child Fetal Neonatal Ed. 2010; 95: F447-F451
        • Wilkinson D.J.
        • Andersen C.C.
        • Smith K.
        • et al.
        Pharyngeal pressure with high-flow nasal cannulae in premature infants.
        J Perinatol. 2008; 28: 42-47
        • Liew Z.
        • Fenton A.C.
        • Harigopal S.
        • et al.
        Physiological effects of high-flow nasal cannula therapy in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 87-93
        • Lavizzari A.
        • Veneroni C.
        • Colnaghi M.
        • et al.
        Respiratory mechanics during NCPAP and HHHFNC at equal distending pressures.
        Arch Dis Child Fetal Neonatal Ed. 2014; 99: F315-F320
        • Dysart K.
        • Miller T.L.
        • Wolfson M.R.
        • et al.
        Research in high flow therapy: mechanisms of action.
        Respir Med. 2009; 103: 1400-1405
        • Mikalsen I.B.
        • Davis P.
        • Oymar K.
        High flow nasal cannula in children: a literature review.
        Scand J Trauma Resusc Emerg Med. 2016; 24: 93
        • Miller S.M.
        • Dowd S.A.
        High-flow nasal cannula and extubation success in the premature infant: a comparison of two modalities.
        J Perinatol. 2010; 30: 805-808
        • Fernandez-Alvarez J.R.
        • Mahoney L.
        • Gandhi R.
        • et al.
        Optiflow vs Vapotherm as extended weaning mode from nasal continuous positive airway pressure in preterm infants 28 weeks gestational age.
        Pediatr Pulmonol. 2020; 55: 2624-2629
        • Manley B.J.
        • Roberts C.T.
        • Frøisland D.H.
        • et al.
        Refining the use of nasal high-flow therapy as primary respiratory support for preterm infants.
        J Pediatr. 2018; 196: 65-70.e1
        • McKimmie-Doherty M.
        • Arnolda G.R.B.
        • Buckmaster A.G.
        • et al.
        Predicting nasal high-flow treatment success in newborn infants with respiratory distress cared for in nontertiary hospitals.
        J Pediatr. 2020; 227: 135-141.e1
        • Schmid F.
        • Olbertz D.M.
        • Ballmann M.
        The use of high-flow nasal cannula (HFNC) as respiratory support in neonatal and pediatric intensive care units in Germany: a nationwide survey.
        Respir Med. 2017; 131: 210-214
        • Locke R.G.
        • Wolfson M.R.
        • Shaffer T.H.
        Inadvertent administration of positive end-distending pressure during nasal cannula flow.
        Pediatrics. 1993; 91: 135-138
        • Jasin L.R.
        • Kern S.
        • Thompson S.
        • et al.
        Subcutaneous scalp emphysema, pneumo-orbitis and pneumocephalus in a neonate on high humidity high flow nasal cannula.
        J Perinatol. 2008; 28: 779-781
        • Iglesias-Deus A.
        • Pérez-Muñuzuri A.
        • López-Suárez O.
        • et al.
        Tension pneumocephalus induced by high-flow nasal cannula ventilation in a neonate.
        Arch Dis Child Fetal Neonatal Ed. 2017; 102: F173-F175
        • Ramaswamy V.V.
        • More K.
        • Roehr C.C.
        • et al.
        Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: systematic review and network meta-analysis.
        Pediatr Pulmonol. 2020; 55: 2940-2963
        • Bruet S.
        • Butin M.
        • Dutheil F.
        Systematic review of high-flow nasal cannula versus continuous positive airway pressure for primary support in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2021;
        • Wilkinson D.
        • Andersen C.
        • O’Donnell C.P.F.
        • et al.
        High flow nasal cannula for respiratory support in preterm infants.
        Cochrane Database Syst Rev. 2016; 2 (CD006405)
        • Ramaswamy V.V.
        • Bandyopadhyay T.
        • Nanda D.
        • et al.
        Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: a systematic review and network meta-analysis.
        Pediatr Pulmonol. 2020; 55: 2924-2939
        • Uchiyama A.
        • Okazaki K.
        • Kondo M.
        • et al.
        Randomized controlled trial of high-flow nasal cannula in preterm infants after extubation.
        Pediatrics. 2020; 146: e20201101
        • Cummings J.J.
        • Polin R.A.
        Committee on Fetus and Newborn, American Academy of Pediatrics. Noninvasive respiratory support.
        Pediatrics. 2016; 137: e20153758
        • Sweet D.G.
        • Carnielli V.
        • Greisen G.
        • et al.
        European Consensus guidelines on the management of respiratory distress syndrome: 2019 update.
        Neonatology. 2019; 115: 432-450