Advertisement
Review Article| Volume 47, ISSUE 3, P575-592, September 2020

Hypothermia and Cardiovascular Instability

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nestaas E.
        • Stoylen A.
        • Brunvand L.
        • et al.
        Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates.
        Cardiol Young. 2011; 21: 1-7
        • Kluckow M.
        Functional echocardiography in assessment of the cardiovascular system in asphyxiated neonates.
        J Pediatr. 2011; 158: e13-e18
        • Perlman J.M.
        • Wyllie J.
        • Kattwinkel J.
        • et al.
        Part 11: neonatal resuscitation: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations.
        Circulation. 2010; 122: S516-S538
        • Jacobs S.E.
        • Berg M.
        • Hunt R.
        • et al.
        Cooling for newborns with hypoxic ischaemic encephalopathy.
        Cochrane Database Syst Rev. 2013; 1 (CD003311)
        • Maiwald C.A.
        • Annink K.V.
        • Rudiger M.
        • et al.
        Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III).
        BMC Pediatr. 2019; 19: 210
        • Nestaas E.
        • Skranes J.H.
        • Stoylen A.
        • et al.
        The myocardial function during and after whole-body therapeutic hypothermia for hypoxic-ischemic encephalopathy, a cohort study.
        Early Hum Dev. 2014; 90: 247-252
        • Giesinger R.E.
        • Bailey L.J.
        • Deshpande P.
        • et al.
        Hypoxic-ischemic encephalopathy and therapeutic hypothermia: the hemodynamic perspective.
        J Pediatr. 2017; 180: 22-30.e2
        • Shah P.
        • Riphagen S.
        • Beyene J.
        • et al.
        Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy.
        Arch Dis Child Fetal Neonatal Ed. 2004; 89: F152-F155
        • Fellman V.
        • Raivio K.O.
        Reperfusion injury as the mechanism of brain damage after perinatal asphyxia.
        Pediatr Res. 1997; 41: 599-606
        • Donnelly W.H.
        • Bucciarelli R.L.
        • Nelson R.M.
        Ischemic papillary muscle necrosis in stressed newborn infants.
        J Pediatr. 1980; 96: 295-300
        • Lapointe A.
        • Barrington K.J.
        Pulmonary hypertension and the asphyxiated newborn.
        J Pediatr. 2011; 158: e19-e24
        • Volpe J.J.
        Chapter 19 - hypoxic-ischemic injury in the term infant: pathophysiology.
        in: Volpe J.J. Inder T.E. Darras B.T. Volpe's neurology of the newborn. 6th edition. Elsevier, Philadelphia2018: 500-509
        • Goulding R.M.
        • Stevenson N.J.
        • Murray D.M.
        • et al.
        Heart rate variability in hypoxic ischemic encephalopathy: correlation with EEG grade and 2-y neurodevelopmental outcome.
        Pediatr Res. 2015; 77: 681-687
        • Vergales B.D.
        • Zanelli S.A.
        • Matsumoto J.A.
        • et al.
        Depressed heart rate variability is associated with abnormal EEG, MRI, and death in neonates with hypoxic ischemic encephalopathy.
        Am J Perinatol. 2014; 31: 855-862
        • Montaldo P.
        • Cuccaro P.
        • Caredda E.
        • et al.
        Electrocardiographic and echocardiographic changes during therapeutic hypothermia in encephalopathic infants with long-term adverse outcome.
        Resuscitation. 2018; 130: 99-104
        • Hochwald O.
        • Jabr M.
        • Osiovich H.
        • et al.
        Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy.
        J Pediatr. 2014; 164: 999-1004 e1001
        • Tian F.
        • Tarumi T.
        • Liu H.
        • et al.
        Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy.
        Neuroimage Clin. 2016; 11: 124-132
        • Elstad M.
        • Liu X.
        • Thoresen M.
        Heart rate response to therapeutic hypothermia in infants with hypoxic-ischaemic encephalopathy.
        Resuscitation. 2016; 106: 53-57
        • Kaiser J.R.
        • Gauss C.H.
        • Williams D.K.
        The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants.
        Pediatr Res. 2005; 58: 931-935
        • Noori S.
        • Anderson M.
        • Soleymani S.
        • et al.
        Effect of carbon dioxide on cerebral blood flow velocity in preterm infants during postnatal transition.
        Acta Paediatr. 2014; 103: e334-e339
        • Skranes J.H.
        • Elstad M.
        • Thoresen M.
        • et al.
        Hypothermia makes cerebral resistance index a poor prognostic tool in encephalopathic newborns.
        Neonatology. 2014; 106: 17-23
        • Inder T.E.
        • Volpe J.J.
        Chapter 20 - hypoxic-ischemic injury in the term infant: clinical-neurological features, diagnosis, imaging, prognosis, therapy.
        in: Volpe J.J. Inder T.E. Darras B.T. Volpe's neurology of the newborn. 6th edition. Elsevier, Philadelphia2018: 510-563.e5
        • Thoresen M.
        • Satas S.
        • Loberg E.M.
        • et al.
        Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective.
        Pediatr Res. 2001; 50: 405-411
        • Breatnach C.R.
        • Forman E.
        • Foran A.
        • et al.
        Left ventricular rotational mechanics in infants with hypoxic ischemic encephalopathy and preterm infants at 36 weeks postmenstrual age: a comparison with healthy term controls.
        Echocardiography. 2017; 34: 232-239
        • Gambassi G.
        • Cerbai E.
        • Pahor M.
        • et al.
        Temperature modulates calcium homeostasis and ventricular arrhythmias in myocardial preparations.
        Cardiovasc Res. 1994; 28: 391-399
        • Thoresen M.
        • Whitelaw A.
        Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy.
        Pediatrics. 2000; 106: 92-99
        • Gebauer C.M.
        • Knuepfer M.
        • Robel-Tillig E.
        • et al.
        Hemodynamics among neonates with hypoxic-ischemic encephalopathy during whole-body hypothermia and passive rewarming.
        Pediatrics. 2006; 117: 843-850
        • Giesinger R.E.
        • El Shahed A.I.
        • Castaldo M.P.
        • et al.
        Impaired Right ventricular performance is associated with adverse outcome following hypoxic ischemic encephalopathy.
        Am J Respir Crit Care Med. 2019; 200: 1294-1305
        • Ferferieva V.
        • Van den Bergh A.
        • Claus P.
        • et al.
        The relative value of strain and strain rate for defining intrinsic myocardial function.
        Am J Physiol Heart Circ Physiol. 2012; 302: H188-H195
        • Czernik C.
        • Rhode S.
        • Helfer S.
        • et al.
        Left ventricular longitudinal strain and strain rate measured by 2-D speckle tracking echocardiography in neonates during whole-body hypothermia.
        Ultrasound Med Biol. 2013; 39: 1343-1349
        • Liu X.
        • Tooley J.
        • Løberg E.M.
        • et al.
        Immediate hypothermia reduces cardiac troponin i after hypoxic-ischemic encephalopathy in newborn pigs.
        Pediatr Res. 2011; 70: 352-356
        • Giesinger R.E.
        • McNamara P.J.
        Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology.
        Semin Perinatol. 2016; 40: 174-188
        • Forman E.
        • Breatnach C.R.
        • Ryan S.
        • et al.
        Noninvasive continuous cardiac output and cerebral perfusion monitoring in term infants with neonatal encephalopathy: assessment of feasibility and reliability.
        Pediatr Res. 2017; 82: 789-795
        • Zanelli S.
        • Buck M.
        • Fairchild K.
        Physiologic and pharmacologic considerations for hypothermia therapy in neonates.
        J Perinatology. 2011; 31: 377-386
        • Osborn D.A.
        • Evans N.
        • Kluckow M.
        Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference.
        Arch Dis Child. 2004; 89: 168-173
        • de Boode W.P.
        Clinical monitoring of systemic hemodynamics in critically ill newborns.
        Early Hum Dev. 2010; 86: 137-141
        • Jedeikin R.
        • Primhak A.
        • Shennan A.T.
        • et al.
        Serial electrocardiographic changes in healthy and stressed neonates.
        Arch Dis Child. 1983; 58: 605-611
        • Kanik E.
        • Ozer E.A.
        • Bakiler A.R.
        • et al.
        Assessment of myocardial dysfunction in neonates with hypoxic-ischemic encephalopathy: is it a significant predictor of mortality?.
        J Matern Fetal Neonatal Med. 2009; 22: 239-242
        • Jiang L.
        • Li Y.
        • Zhang Z.
        • et al.
        Use of high-sensitivity cardiac troponin I levels for early diagnosis of myocardial injury after neonatal asphyxia.
        J Int Med Res. 2019; 47: 3234-3242
        • Barberi I.
        • Calabro M.P.
        • Cordaro S.
        • et al.
        Myocardial ischaemia in neonates with perinatal asphyxia. Electrocardiographic, echocardiographic and enzymatic correlations.
        Eur J Pediatr. 1999; 158: 742-747
        • Levy P.T.
        • Tissot C.
        • Eriksen B.H.
        • et al.
        Application of neonatologist performed echocardiography in the assessment and management of neonatal heart failure unrelated to congenital heart disease.
        Pediatr Res. 2018; 84: 78-88
        • de Boode W.P.
        • van der Lee R.
        • Eriksen B.H.
        • et al.
        The role of Neonatologist Performed Echocardiography in the assessment and management of neonatal shock.
        Pediatr Res. 2018; 84: 57-67
        • Nestaas E.
        • Schubert U.
        • de Boode W.P.
        • et al.
        • European Special Interest Group 'Neonatologist Performed Echocardiography
        Tissue Doppler velocity imaging and event timings in neonates: a guide to image acquisition, measurement, interpretation, and reference values.
        Pediatr Res. 2018; 84: 18-29
        • El-Khuffash A.
        • Schubert U.
        • Levy P.T.
        • et al.
        • European Special Interest Group 'Neonatologist Performed Echocardiography’ (NPE)
        Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values.
        Pediatr Res. 2018; 84: 30-45
        • Hansmann G.
        • Apitz C.
        • Abdul-Khaliq H.
        • et al.
        Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK.
        Heart. 2016; 102: ii86-ii100
        • Martinello K.
        • Hart A.R.
        • Yap S.
        • et al.
        Management and investigation of neonatal encephalopathy: 2017 update.
        Arch Dis Child Fetal Neonatal Ed. 2017; 102: f346-f358
        • Noori S.
        • Seri I.
        Evidence-based versus pathophysiology-based approach to diagnosis and treatment of neonatal cardiovascular compromise.
        Semin Fetal Neonatal Med. 2015; 20: 238-245
        • Bussmann N.
        • El-Khuffash A.
        Future perspectives on the use of deformation analysis to identify the underlying pathophysiological basis for cardiovascular compromise in neonates.
        Pediatr Res. 2019; 85: 591-595
        • Espinoza A.
        • Kerans V.
        • Opdahl A.
        • et al.
        Effects of therapeutic hypothermia on left ventricular function assessed by ultrasound imaging.
        J Am Soc Echocardiogr. 2013; 26: 1353-1363
        • Ilves P.
        • Lintrop M.
        • Metsvaht T.
        • et al.
        Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants.
        Acta Paediatr. 2004; 93: 523-528
        • Davies A.O.
        • Lefkowitz R.J.
        Regulation of beta-adrenergic receptors by steroid hormones.
        Annu Rev Physiol. 1984; 46: 119-130
        • Kirupakaran K.
        • Mahoney L.
        • Rabe H.
        • et al.
        Understanding the stability of dopamine and dobutamine over 24 h in simulated neonatal ward conditions.
        Paediatr Drugs. 2017; 19: 487-495
        • Keir A.K.
        • Karam O.
        • Hodyl N.
        • et al.
        International, multicentre, observational study of fluid bolus therapy in neonates.
        J Paediatr Child Health. 2019; 55: 632-639
        • Barrington K.J.
        Common hemodynamic problems in the neonate.
        Neonatology. 2013; 103: 335-340
        • Dempsey E.
        • Rabe H.
        The use of cardiotonic drugs in neonates.
        Clin Perinatol. 2019; 46: 273-290
        • Noori S.
        • Seri I.
        Neonatal blood pressure support: the use of inotropes, lusitropes, and other vasopressor agents.
        Clin Perinatol. 2012; 39: 221-238
        • Joynt C.
        • Cheung P.Y.
        Cardiovascular supportive therapies for neonates with asphyxia - a literature review of pre-clinical and clinical studies.
        Front Pediatr. 2018; 6: 363
        • Rieg A.D.
        • Schroth S.C.
        • Grottke O.
        • et al.
        Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone.
        Eur J Anaesthesiol. 2009; 26: 946-953
        • Wood T.
        • Thoresen M.
        Physiological responses to hypothermia.
        Semin Fetal Neonatal Med. 2015; 20: 87-96
        • Lakshminrusimha S.
        • Russell J.A.
        • Wedgwood S.
        • et al.
        Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
        Am J Respir Crit Care Med. 2006; 174: 1370-1377
        • Perlman J.M.
        • Wyllie J.
        • Kattwinkel J.
        • et al.
        Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations (reprint).
        Pediatrics. 2015; 136: S120-S166
        • Kasdorf E.
        • Laptook A.
        • Azzopardi D.
        • et al.
        Improving infant outcome with a 10 min Apgar of 0.
        Arch Dis Child Fetal Neonatal Ed. 2015; 100: F102-F105
        • Benumof J.L.
        • Wahrenbrock E.A.
        Dependency of hypoxic pulmonary vasoconstriction on temperature.
        J Appl Physiol Respir Environ Exerc Physiol. 1977; 42: 56-58
        • Lakshminrusimha S.
        • Shankaran S.
        • Laptook A.
        • et al.
        Pulmonary hypertension associated with hypoxic-ischemic encephalopathy-antecedent characteristics and comorbidities.
        J Pediatr. 2018; 196: 45-51.e43
        • McNamara P.J.
        • Shivananda S.P.
        • Sahni M.
        • et al.
        Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide.
        Pediatr Crit Care Med. 2013; 14: 74-84
        • Brown S.B.
        • Raina A.
        • Katz D.
        • et al.
        Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension.
        Chest. 2011; 140: 27-33
        • Sato Y.
        • Kawataki M.
        • Hirakawa A.
        • et al.
        The diameter of the inferior vena cava provides a noninvasive way of calculating central venous pressure in neonates.
        Acta Paediatr. 2013; 102: e241-e246
        • Al Yazidi G.
        • Boudes E.
        • Tan X.
        • et al.
        Intraventricular hemorrhage in asphyxiated newborns treated with hypothermia: a look into incidence, timing and risk factors.
        BMC Pediatr. 2015; 15: 106
        • de Boode W.P.
        • Singh Y.
        • Gupta S.
        • et al.
        Recommendations for neonatologist performed echocardiography in Europe: Consensus Statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN).
        Pediatr Res. 2016; 80: 465-471
        • Wu T.W.
        • Tamrazi B.
        • Soleymani S.
        • et al.
        Hemodynamic changes during rewarming phase of whole-body hypothermia therapy in neonates with hypoxic-ischemic encephalopathy.
        J Pediatr. 2018; 197: 68-74.e2