Genetics and Genetic Testing in Congenital Heart Disease

  • Jason R. Cowan
    Affiliations
    Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA

    Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
    Search for articles by this author
  • Stephanie M. Ware
    Correspondence
    Corresponding author.
    Affiliations
    Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
    Search for articles by this author
Published:April 14, 2015DOI:https://doi.org/10.1016/j.clp.2015.02.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Centers for Disease Control and Prevention (CDC)
        Hospital stays, hospital charges, and in-hospital deaths among infants with selected birth defects–United States, 2003.
        MMWR Morb Mortal Wkly Rep. 2007; 56: 25-29
        • Boneva R.S.
        • Botto L.D.
        • Moore C.A.
        • et al.
        Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979-1997.
        Circulation. 2001; 103: 2376-2381
        • Hoffman J.I.
        Incidence of congenital heart disease: II. Prenatal incidence.
        Pediatr Cardiol. 1995; 16: 155-165
        • Srivastava D.
        Making or breaking the heart: from lineage determination to morphogenesis.
        Cell. 2006; 126: 1037-1048
        • Lage K.
        • Greenway S.C.
        • Rosenfeld J.A.
        • et al.
        Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development.
        Proc Natl Acad Sci U S A. 2012; 109: 14035-14040
        • Lage K.
        • Mollgard K.
        • Greenway S.
        • et al.
        Dissecting spatio-temporal protein networks driving human heart development and related disorders.
        Mol Syst Biol. 2010; 6: 381
        • Stenson P.D.
        • Ball E.V.
        • Mort M.
        • et al.
        Human gene mutation database (HGMD): 2003 update.
        Hum Mutat. 2003; 21: 577-581
        • Lander J.
        • Ware S.
        Copy number variation in congenital heart defects.
        Curr Genet Med Rep. 2014; https://doi.org/10.1007/s40142-014-0049-3
        • Jenkins K.J.
        • Correa A.
        • Feinstein J.A.
        • et al.
        Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics.
        Circulation. 2007; 115: 2995-3014
        • Kuciene R.
        • Dulskiene V.
        Selected environmental risk factors and congenital heart defects.
        Medicina (Kaunas). 2008; 44: 827-832
        • Vallaster M.
        • Vallaster C.D.
        • Wu S.M.
        Epigenetic mechanisms in cardiac development and disease.
        Acta Biochim Biophys Sin (Shanghai). 2012; 44: 92-102
        • Chang C.P.
        • Bruneau B.G.
        Epigenetics and cardiovascular development.
        Annu Rev Physiol. 2012; 74: 41-68
        • Lalani S.R.
        • Belmont J.W.
        Genetic basis of congenital cardiovascular malformations.
        Eur J Med Genet. 2014; 57: 402-413
        • Bruneau B.G.
        Signaling and transcriptional networks in heart development and regeneration.
        Cold Spring Harb Perspect Biol. 2013; 5: a008292
        • Rochais F.
        • Mesbah K.
        • Kelly R.G.
        Signaling pathways controlling second heart field development.
        Circ Res. 2009; 104: 933-942
        • Rana M.S.
        • Christoffels V.M.
        • Moorman A.F.
        A molecular and genetic outline of cardiac morphogenesis.
        Acta Physiol (Oxf). 2013; 207: 588-615
        • Kodo K.
        • Yamagishi H.
        A decade of advances in the molecular embryology and genetics underlying congenital heart defects.
        Circ J. 2011; 75: 2296-2304
        • Fahed A.C.
        • Gelb B.D.
        • Seidman J.G.
        • et al.
        Genetics of congenital heart disease: the glass half empty.
        Circ Res. 2013; 112: 707-720
        • Wagner M.
        • Siddiqui M.A.
        Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation.
        Exp Biol Med (Maywood). 2007; 232: 866-880
        • Wagner M.
        • Siddiqui M.A.
        Signal transduction in early heart development (I): cardiogenic induction and heart tube formation.
        Exp Biol Med (Maywood). 2007; 232: 852-865
        • Meilhac S.M.
        • Esner M.
        • Kelly R.G.
        • et al.
        The clonal origin of myocardial cells in different regions of the embryonic mouse heart.
        Dev Cell. 2004; 6: 685-698
        • Schultheiss T.M.
        • Xydas S.
        • Lassar A.B.
        Induction of avian cardiac myogenesis by anterior endoderm.
        Development. 1995; 121: 4203-4214
        • Jiang X.
        • Rowitch D.H.
        • Soriano P.
        • et al.
        Fate of the mammalian cardiac neural crest.
        Development. 2000; 127: 1607-1616
        • Ratajska A.
        • Czarnowska E.
        • Ciszek B.
        Embryonic development of the proepicardium and coronary vessels.
        Int J Dev Biol. 2008; 52: 229-236
        • McCulley D.J.
        • Black B.L.
        Transcription factor pathways and congenital heart disease.
        Curr Top Dev Biol. 2012; 100: 253-277
        • de Pater E.
        • Ciampricotti M.
        • Priller F.
        • et al.
        Bmp signaling exerts opposite effects on cardiac differentiation.
        Circ Res. 2012; 110: 578-587
        • Naito A.T.
        • Shiojima I.
        • Akazawa H.
        • et al.
        Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis.
        Proc Natl Acad Sci U S A. 2006; 103: 19812-19817
        • Kwon C.
        • Arnold J.
        • Hsiao E.C.
        • et al.
        Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors.
        Proc Natl Acad Sci U S A. 2007; 104: 10894-10899
        • Prall O.W.
        • Menon M.K.
        • Solloway M.J.
        • et al.
        An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation.
        Cell. 2007; 128: 947-959
        • Jay P.Y.
        • Harris B.S.
        • Maguire C.T.
        • et al.
        Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system.
        J Clin Invest. 2004; 113: 1130-1137
        • Lee Y.
        • Shioi T.
        • Kasahara H.
        • et al.
        The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression.
        Mol Cell Biol. 1998; 18: 3120-3129
        • Hiroi Y.
        • Kudoh S.
        • Monzen K.
        • et al.
        Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation.
        Nat Genet. 2001; 28: 276-280
        • Vincentz J.W.
        • Barnes R.M.
        • Firulli B.A.
        • et al.
        Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development.
        Dev Dyn. 2008; 237: 3809-3819
        • Stevens K.N.
        • Hakonarson H.
        • Kim C.E.
        • et al.
        Common variation in ISL1 confers genetic susceptibility for human congenital heart disease.
        PLoS One. 2010; 5: e10855
        • Cresci M.
        • Vecoli C.
        • Foffa I.
        • et al.
        Lack of association of the 3'-UTR polymorphism (rs1017) in the ISL1 gene and risk of congenital heart disease in the white population.
        Pediatr Cardiol. 2013; 34: 938-941
        • Xue L.
        • Wang X.
        • Xu J.
        • et al.
        ISL1 common variant rs1017 is not associated with susceptibility to congenital heart disease in a Chinese population.
        Genet Test Mol Biomarkers. 2012; 16: 679-683
        • Marelli A.J.
        • Ionescu-Ittu R.
        • Mackie A.S.
        • et al.
        Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010.
        Circulation. 2014; 130: 749-756
        • Engelfriet P.
        • Boersma E.
        • Oechslin E.
        • et al.
        The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on Adult Congenital Heart Disease.
        Eur Heart J. 2005; 26: 2325-2333
        • Marelli A.J.
        • Mackie A.S.
        • Ionescu-Ittu R.
        • et al.
        Congenital heart disease in the general population: changing prevalence and age distribution.
        Circulation. 2007; 115: 163-172
        • Ferencz C.
        • Boughman J.A.
        • Neill C.A.
        • et al.
        Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington infant study group.
        J Am Coll Cardiol. 1989; 14: 756-763
        • Grech V.
        • Gatt M.
        Syndromes and malformations associated with congenital heart disease in a population-based study.
        Int J Cardiol. 1999; 68: 151-156
        • Meberg A.
        • Hals J.
        • Thaulow E.
        Congenital heart defects–chromosomal anomalies, syndromes and extracardiac malformations.
        Acta Paediatr. 2007; 96: 1142-1145
        • Posch M.G.
        • Perrot A.
        • Schmitt K.
        • et al.
        Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects.
        Am J Med Genet A. 2008; 146A: 251-253
        • Erdogan F.
        • Larsen L.A.
        • Zhang L.
        • et al.
        High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease.
        J Med Genet. 2008; 45: 704-709
        • Burn J.
        • Brennan P.
        • Little J.
        • et al.
        Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study.
        Lancet. 1998; 351: 311-316
        • Cripe L.
        • Andelfinger G.
        • Martin L.J.
        • et al.
        Bicuspid aortic valve is heritable.
        J Am Coll Cardiol. 2004; 44: 138-143
        • Hinton Jr., R.B.
        • Martin L.J.
        • Tabangin M.E.
        • et al.
        Hypoplastic left heart syndrome is heritable.
        J Am Coll Cardiol. 2007; 50: 1590-1595
        • Insley J.
        The heritability of congenital heart disease.
        Br Med J (Clin Res Ed). 1987; 294: 662-663
        • Shieh J.T.
        • Bittles A.H.
        • Hudgins L.
        Consanguinity and the risk of congenital heart disease.
        Am J Med Genet A. 2012; 158A: 1236-1241
        • Nora J.J.
        Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction.
        Circulation. 1968; 38: 604-617
        • Calcagni G.
        • Digilio M.C.
        • Sarkozy A.
        • et al.
        Familial recurrence of congenital heart disease: an overview and review of the literature.
        Eur J Pediatr. 2007; 166: 111-116
        • Nora J.J.
        From generational studies to a multilevel genetic-environmental interaction.
        J Am Coll Cardiol. 1994; 23: 1468-1471
        • Nora J.J.
        • Nora A.H.
        Update on counseling the family with a first-degree relative with a congenital heart defect.
        Am J Med Genet. 1988; 29: 137-142
        • Breckpot J.
        • Thienpont B.
        • Peeters H.
        • et al.
        Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects.
        J Pediatr. 2010; 156 (817.e1–817.e4): 810-817
        • Connor J.A.
        • Hinton R.B.
        • Miller E.M.
        • et al.
        Genetic testing practices in infants with congenital heart disease.
        Congenit Heart Dis. 2014; 9: 158-167
        • Pierpont M.E.
        • Basson C.T.
        • Benson Jr., D.W.
        • et al.
        Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics.
        Circulation. 2007; 115: 3015-3038
        • van Engelen K.
        • Baars M.J.
        • Felix J.P.
        • et al.
        The value of the clinical geneticist caring for adults with congenital heart disease: diagnostic yield and patients' perspective.
        Am J Med Genet A. 2013; 161A: 1628-1637
        • van Engelen K.
        • Baars M.J.
        • van Rongen L.T.
        • et al.
        Adults with congenital heart disease: patients' knowledge and concerns about inheritance.
        Am J Med Genet A. 2011; 155A: 1661-1667
        • Parrott A.
        • Ware S.M.
        The role of the geneticist and genetic counselor in an ACHD clinic.
        Prog Pediatr Cardiol. 2012; 34: 15-20
        • Breckpot J.
        • Thienpont B.
        • Arens Y.
        • et al.
        Challenges of interpreting copy number variation in syndromic and non-syndromic congenital heart defects.
        Cytogenet Genome Res. 2011; 135: 251-259
        • Baker K.
        • Sanchez-de-Toledo J.
        • Munoz R.
        • et al.
        Critical congenital heart disease–utility of routine screening for chromosomal and other extracardiac malformations.
        Congenit Heart Dis. 2012; 7: 145-150
        • Richards A.A.
        • Santos L.J.
        • Nichols H.A.
        • et al.
        Cryptic chromosomal abnormalities identified in children with congenital heart disease.
        Pediatr Res. 2008; 64: 358-363
        • Thienpont B.
        • Mertens L.
        • de Ravel T.
        • et al.
        Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients.
        Eur Heart J. 2007; 28: 2778-2784
        • Goldmuntz E.
        • Paluru P.
        • Glessner J.
        • et al.
        Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies.
        Congenit Heart Dis. 2011; 6: 592-602
        • Schoumans J.
        • Ruivenkamp C.
        • Holmberg E.
        • et al.
        Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH).
        J Med Genet. 2005; 42: 699-705
        • Thuresson A.C.
        • Bondeson M.L.
        • Edeby C.
        • et al.
        Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation.
        Cytogenet Genome Res. 2007; 118: 1-7
        • Wincent J.
        • Anderlid B.M.
        • Lagerberg M.
        • et al.
        High-resolution molecular karyotyping in patients with developmental delay and/or multiple congenital anomalies in a clinical setting.
        Clin Genet. 2011; 79: 147-157
        • Dorn C.
        • Grunert M.
        • Sperling S.R.
        Application of high-throughput sequencing for studying genomic variations in congenital heart disease.
        Brief Funct Genomics. 2014; 13: 51-65
        • Shendure J.
        • Ji H.
        Next-generation DNA sequencing.
        Nat Biotechnol. 2008; 26: 1135-1145
        • Mardis E.R.
        A decade's perspective on DNA sequencing technology.
        Nature. 2011; 470: 198-203
        • Atwal P.S.
        • Brennan M.L.
        • Cox R.
        • et al.
        Clinical whole-exome sequencing: are we there yet?.
        Genet Med. 2014; 16: 717-719
        • Bamshad M.J.
        • Ng S.B.
        • Bigham A.W.
        • et al.
        Exome sequencing as a tool for Mendelian disease gene discovery.
        Nat Rev Genet. 2011; 12: 745-755
        • Iglesias A.
        • Anyane-Yeboa K.
        • Wynn J.
        • et al.
        The usefulness of whole-exome sequencing in routine clinical practice.
        Genet Med. 2014; 16: 922-931
        • Levenson D.
        Whole-exome sequencing emerges as clinical diagnostic tool: testing method proves useful for diagnosing wide range of genetic disorders.
        Am J Med Genet A. 2014; 164A: ix-x
        • Schuler B.A.
        • Prisco S.Z.
        • Jacob H.J.
        Using whole exome sequencing to walk from clinical practice to research and back again.
        Circulation. 2013; 127: 968-970
        • Chen C.T.
        • Wang J.C.
        • Cohen B.A.
        The strength of selection on ultraconserved elements in the human genome.
        Am J Hum Genet. 2007; 80: 692-704
        • Kryukov G.V.
        • Pennacchio L.A.
        • Sunyaev S.R.
        Most rare missense alleles are deleterious in humans: implications for complex disease and association studies.
        Am J Hum Genet. 2007; 80: 727-739
        • Ahituv N.
        • Zhu Y.
        • Visel A.
        • et al.
        Deletion of ultraconserved elements yields viable mice.
        PLoS Biol. 2007; 5: e234
        • Lupski J.R.
        • Gonzaga-Jauregui C.
        • Yang Y.
        • et al.
        Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy.
        Genome Med. 2013; 5: 57
        • Ng S.B.
        • Turner E.H.
        • Robertson P.D.
        • et al.
        Targeted capture and massively parallel sequencing of 12 human exomes.
        Nature. 2009; 461: 272-276
        • Yang Y.
        • Muzny D.M.
        • Reid J.G.
        • et al.
        Clinical whole-exome sequencing for the diagnosis of mendelian disorders.
        N Engl J Med. 2013; 369: 1502-1511
        • Need A.C.
        • Shashi V.
        • Hitomi Y.
        • et al.
        Clinical application of exome sequencing in undiagnosed genetic conditions.
        J Med Genet. 2012; 49: 353-361
        • Al Turki S.
        • Manickaraj A.K.
        • Mercer C.L.
        • et al.
        Rare variants in NR2F2 cause congenital heart defects in humans.
        Am J Hum Genet. 2014; 94: 574-585
        • Arrington C.B.
        • Bleyl S.B.
        • Matsunami N.
        • et al.
        Exome analysis of a family with pleiotropic congenital heart disease.
        Circ Cardiovasc Genet. 2012; 5: 175-182
        • Francis C.
        • Prapa S.
        • Abdulkareem N.
        • et al.
        95 identification of likely pathogenic variants in patients with bicuspid aortic valve: correlation of complex genotype with a more severe aortic phenotype.
        Heart. 2014; 100: A55-A56
        • Tariq M.
        • Belmont J.W.
        • Lalani S.
        • et al.
        SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing.
        Genome Biol. 2011; 12: R91
        • Ng P.C.
        • Levy S.
        • Huang J.
        • et al.
        Genetic variation in an individual human exome.
        PLoS Genet. 2008; 4: e1000160
        • Marth G.T.
        • Yu F.
        • Indap A.R.
        • et al.
        The functional spectrum of low-frequency coding variation.
        Genome Biol. 2011; 12: R84
        • Tennessen J.A.
        • Bigham A.W.
        • O'Connor T.D.
        • et al.
        Evolution and functional impact of rare coding variation from deep sequencing of human exomes.
        Science. 2012; 337: 64-69
        • Li Y.
        • Vinckenbosch N.
        • Tian G.
        • et al.
        Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants.
        Nat Genet. 2010; 42: 969-972
        • Kaye J.
        • Boddington P.
        • de Vries J.
        • et al.
        Ethical implications of the use of whole genome methods in medical research.
        Eur J Hum Genet. 2010; 18: 398-403
        • Morozova O.
        • Marra M.A.
        Applications of next-generation sequencing technologies in functional genomics.
        Genomics. 2008; 92: 255-264
        • MacLellan W.R.
        • Wang Y.
        • Lusis A.J.
        Systems-based approaches to cardiovascular disease.
        Nat Rev Cardiol. 2012; 9: 172-184
        • Sperling S.R.
        Systems biology approaches to heart development and congenital heart disease.
        Cardiovasc Res. 2011; 91: 269-278
        • van der Bom T.
        • Zomer A.C.
        • Zwinderman A.H.
        • et al.
        The changing epidemiology of congenital heart disease.
        Nat Rev Cardiol. 2011; 8: 50-60
        • Roos-Hesselink J.W.
        • Kerstjens-Frederikse W.S.
        • Meijboom B.R.
        • et al.
        Inheritance of congenital heart disease.
        Neth Heart J. 2005; 13: 4
        • Blue G.M.
        • Kirk E.P.
        • Sholler G.F.
        • et al.
        Congenital heart disease: current knowledge about causes and inheritance.
        Med J Aust. 2012; 197: 155-159
        • Bernier F.P.
        • Spaetgens R.
        The geneticist's role in adult congenital heart disease.
        Cardiol Clin. 2006; 24 (v-vi): 557-569