Structural Brain Defects

Published:April 03, 2015DOI:https://doi.org/10.1016/j.clp.2015.02.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pérez-Dueñas B.
        • De La Osa A.
        • Capdevila A.
        • et al.
        Brain injury in glutaric aciduria type I: the value of functional techniques in magnetic resonance imaging.
        Eur J Paediatr Neurol. 2009; 13: 534-540
        • Gropman A.L.
        Neuroimaging in mitochondrial disorders.
        Neurotherapeutics. 2013; 10: 273-285
        • Radmanesh A.
        • Zaman T.
        • Ghanaati H.
        • et al.
        Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature.
        Pediatr Radiol. 2008; 38: 1054-1061
        • Basser P.J.
        Inferring microstructural features and the physiological state of tissues from diffusion-weighted images.
        NMR Biomed. 1995; 8: 333-344
        • Cakmakci H.
        • Pekcevik Y.
        • Yis U.
        • et al.
        Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature.
        Eur J Radiol. 2010; 74: e161-e171
        • Panigrahy A.
        • Nelson Jr., M.D.
        • Blüml S.
        Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications.
        Pediatr Radiol. 2010; 40: 3-30
        • Brooks W.M.
        • Friedman S.D.
        • Stidley C.A.
        Reproducibility of 1H-MRS in vivo.
        Magn Reson Med. 1999; 41: 193-197
        • Chard D.T.
        • McLean M.A.
        • Parker G.J.
        • et al.
        Reproducibility of in vivo metabolite quantification with proton magnetic resonance spectroscopic imaging.
        J Magn Reson Imaging. 2002; 15: 219-225
        • Pfeuffer J.
        • Tkac I.
        • Provencher S.W.
        • et al.
        Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain.
        J Magn Reson. 1999; 141: 104-120
        • Bowman C.
        A multiscale model for Bayesian image segmentation.
        IEEE Trans Med Imaging. 1994; 3: 162-177
        • Whitwell J.L.
        • Crum W.R.
        • Watt H.C.
        • et al.
        Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging.
        AJNR Am J Neuroradiol. 2001; 22: 1483-1489
        • Patay Z.
        Metabolic disorders.
        in: Tortori-Donati P. Rossi A. Pediatric neuroradiology: brain, head, neck and spine. Springer, Berlin2009: 158-160
        • Barkovich J.A.
        • Patay Z.
        Metabolic, toxic, and inflammatory brain disorders.
        in: Barkovich A.J. Raybaud C. Pediatric neuroimaging. 5th edition. Lippincott Williams & Wilkins, Philadelphia2012: 81-83
        • Prasad A.N.
        • Malinger G.
        • Lerman-Sagie T.
        Primary disorders of metabolism and disturbed fetal brain development.
        Clin Perinatol. 2009; 36: 621-638
        • Brassier A.
        • Ottolenghi C.
        • Boddaert N.
        • et al.
        Prenatal symptoms and diagnosis of inherited metabolic diseases.
        Arch Pediatr. 2012; 19: 959-969
        • Nissenkorn A.
        • Michelson M.
        • Ben-Zeev B.
        • et al.
        Inborn errors of metabolism: a cause of abnormal brain development.
        Neurology. 2001; 56: 1265-1272
        • Bamforth F.J.
        • Bamforth J.S.
        • Applegarth D.A.
        Structural anomalies in patients with inherited metabolic diseases.
        J Inherit Metab Dis. 1994; 17: 330-332
        • Bamforth F.
        • Bamforth S.
        • Poskitt K.
        • et al.
        Abnormalities of corpus callosum in patients with inherited metabolic diseases.
        Lancet. 1988; 2 ([letter]): 451
        • Kolodny E.H.
        Agenesis of the corpus callosum: a marker for inherited metabolic disease?.
        Neurology. 1989; 39: 847-848
        • Dobyns W.B.
        Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia.
        Neurology. 1989; 39: 817-820
        • Fleck M.S.
        • Samei E.
        • Mitroff S.R.
        Generalized “satisfaction of search”: adverse influences on dual-target search accuracy.
        J Exp Psychol Appl. 2010; 16: 60-71
        • Leijser L.M.
        • de Vries L.S.
        • Rutherford M.A.
        • et al.
        Cranial ultrasound in metabolic disorders presenting in the neonatal period: characteristic features and comparison with MR imaging.
        AJNR Am J Neuroradiol. 2007; 28: 1223-1231
        • Mochel F.
        • Grebille A.G.
        • Benachi A.
        • et al.
        Contribution of fetal MR imaging in the prenatal diagnosis of Zellweger syndrome.
        AJNR Am J Neuroradiol. 2006; 27: 333-336
        • Robinson J.N.
        • Norwitz E.R.
        • Mulkern R.
        • et al.
        Prenatal diagnosis of pyruvate dehydrogenase deficiency using magnetic resonance imaging.
        Prenat Diagn. 2001; 21: 1053-1056
        • Righini A.
        • Fiori L.
        • Parazzini C.
        • et al.
        Early prenatal magnetic resonance imaging of glutaric aciduria type 1: case report.
        J Comput Assist Tomogr. 2010; 34: 446-448
        • Volpe J.
        Neuronal proliferation, migration, organization and myelination.
        in: Volpe J. Neurology of the newborn. 3rd edition. WB Saunders, Philadelphia1995: 43-94
        • Montenegro M.A.
        • Gerreiro M.M.
        • Lopes-Cendes I.
        • et al.
        Interrelationship of genetics and prenatal injury in the genesis of malformations of cortical development.
        Arch Neurol. 2002; 59: 1147-1153
        • Choksi V.
        • Hoeffner E.
        • Karaarslan E.
        • et al.
        Infantile refsum disease: case report.
        AJNR Am J Neuroradiol. 2003; 24: 2082-2084
        • Cakirer S.
        • Savas M.R.
        Infantile refsum disease: serial evaluation with MRI.
        Pediatr Radiol. 2005; 35: 212-215
        • Barkovich A.J.
        • Peck W.W.
        MR of Zellweger syndrome.
        AJNR Am J Neuroradiol. 1997; 18: 1163-1170
        • van der Knaap M.S.
        • Valk J.
        The MR spectrum of peroxisomal disorders.
        Neuroradiology. 1991; 33: 30-37
        • Bruhn H.
        • Kruse B.
        • Korenke G.C.
        • et al.
        Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders.
        J Compt Assist Tomogr. 1992; 16: 335-344
        • Cecil K.M.
        • Lindquist D.M.
        Leukodystrophies.
        in: Bluml S. Panigrahy A. MR Spectroscopy of pediatric brain disorders. Springer, New York2013: 105-122
        • Kerrigan J.F.
        • Aleck K.A.
        • Tarby T.J.
        • et al.
        Fumaric aciduria: clinical and imaging features.
        Ann Neurol. 2000; 47: 583-588
        • Farrell D.F.
        Neonatal adrenoleukodystrophy: a clinical, pathologic, and biochemical study.
        Pediatr Neurol. 2012; 47: 330-336
        • Goh S.
        Neuroimaging features in a neonate with rhizomelic chondrodysplasia punctata.
        Pediatr Neurol. 2007; 37: 382-384
        • Viola A.
        • Confort-Gouny S.
        • Ranjeva J.P.
        • et al.
        MR imaging and MR spectroscopy in rhizomelic chondrodysplasia punctata.
        AJNR Am J Neuroradiol. 2002; 23: 480-483
        • Barkovich A.J.
        Neuroimaging manifestations and classification of congenital muscular dystrophies.
        AJNR Am J Neuroradiol. 1998; 19: 1389-1396
        • Rhodes R.E.
        • Hatten Jr., H.P.
        • Ellington K.S.
        Walker-Warburg syndrome.
        AJNR Am J Neuroradiol. 1992; 13: 123-126
        • Aida N.
        • Yagishita A.
        • Takada K.
        • et al.
        Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions.
        AJNR Am J Neuroradiol. 1994; 15: 1755-1759
        • Aida N.
        • Tamagawa K.
        • Takada K.
        • et al.
        Brain MR in Fukuyama congenital muscular dystrophy.
        AJNR Am J Neuroradiol. 1996; 17: 605-613
        • Yoshioka M.
        • Saiwai S.
        • Kuroki S.
        • et al.
        MR imaging of the brain in Fukuyama-type congenital muscular dystrophy.
        AJNR Am J Neuroradiol. 1991; 12: 63-65
        • Kato Z.
        • Morimoto M.
        • Orii K.E.
        • et al.
        Developmental changes of radiological findings in Fukuyama-type congenital muscular dystrophy.
        Pediatr Radiol. 2010; 40: S127-S129
        • Sonninen P.
        • Autti T.
        • Varho T.
        • et al.
        Brain involvement in Salla disease.
        AJNR Am J Neuroradiol. 1999; 20: 433-443
        • Raybaud C.
        The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation.
        Neuroradiology. 2010; 52: 447-477
        • Baertling F.
        • Rodenburg J.R.
        • Schaper J.
        • et al.
        A guide to diagnosis and treatment of Leigh syndrome.
        J Neurol Neurosurg Psychiatry. 2014; 85: 257-265
        • Moroni I.
        • Bugiani M.
        • Bizzi A.
        • et al.
        Cerebral white matter involvement in children with mitochondrial encephalopathies.
        Neuropediatrics. 2002; 33: 79-85
        • Rubio-Gozalbo M.E.
        • Heerschap A.
        • Trijbels J.M.
        • et al.
        Proton MR spectroscopy in a child with pyruvate dehydrogenase complex deficiency.
        Magn Reson Imaging. 1999; 17: 939-944
        • Zand D.J.
        • Simon E.M.
        • Pulitzer S.B.
        • et al.
        In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency.
        AJNR Am J Neuroradiol. 2003; 24: 1471-1474
        • Mourmans J.
        • Majoie C.B.
        • Barth P.G.
        • et al.
        Sequential MR imaging changes in nonketotic hyperglycinemia.
        AJNR Am J Neuroradiol. 2006; 27: 208-211
        • Kelley R.L.
        • Roessler E.
        • Hennekam R.C.
        • et al.
        Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: does abnormal cholesterol metabolism affect the function of Sonic Hedgehog?.
        Am J Med Genet. 1996; 66: 478-484
        • Lee R.W.
        • Conley S.K.
        • Gropman A.
        • et al.
        Brain magnetic resonance imaging findings in Smith-Lemili-Opitz syndrome.
        Am J Med Genet A. 2013; 161: 2407-2419
        • Caruso P.A.
        • Poussaint T.Y.
        • Tzika A.A.
        • et al.
        MRI and 1H MRS findings in Smith-Lemli-Opitz syndrome.
        Neuroradiology. 2004; 46: 3-14
        • Cecil K.M.
        • Lindquist D.M.
        Metabolic disorders.
        in: Bluml S. Panigrahy A. MR spectroscopy of pediatric brain disorders. Springer, New York2013: 123-148
        • Varho T.
        • Komu M.
        • Sonninen P.
        • et al.
        A new metabolite contributing to N-acetyl signal in 1H MRS of the brain in Salla disease.
        Neurology. 1999; 52 ([Erratum appears in Neurology 1999;53(5):1162]): 1668-1672
        • Aynaci F.M.
        • Mocan H.
        • Bahadir S.
        • et al.
        A case of Menkes' syndrome associated with deafness and inferior cerebellar vermian hypoplasia.
        Acta Paediatr. 1997; 86: 121-123
        • Poretti A.
        • Wolf N.I.
        • Boltshauser E.
        Differential diagnosis of cerebellar atrophy in childhood.
        Eur J Paediatr Neurol. 2008; 12: 155-167
        • Bindu P.S.
        • Taly A.B.
        • Sonam K.
        • et al.
        Bilateral hypertrophic olivary nucleus degeneration on magnetic resonance imaging in children with Leigh and Leigh-like syndrome.
        Br J Radiol. 2014; 87: 20130478
        • Feraco P.
        • Mirabelli-Badenier M.
        • Severino M.
        • et al.
        The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a.
        AJNR Am J Neuroradiol. 2012; 33: 2062-2067
        • Holzbach U.
        • Hanefeld F.
        • Helms G.
        • et al.
        Localized proton magnetic spectroscopy of cerebral abnormalities in children with carbohydrate-deficient glycoprotein syndrome.
        Acta Paediatr. 1995; 84: 781-786
        • Etchevers H.C.
        • Vincent C.
        • Le Douarin N.M.
        • et al.
        The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain.
        Development. 2001; 128: 1059-1068
        • Eeg-Olofsson O.
        • Zhang W.W.
        • Olsson Y.
        • et al.
        D-2-hydroxyglutaric aciduria with cerebral, vascular, and muscular abnormalities in a 14-year-old boy.
        J Child Neurol. 2000; 15: 488-492
        • van der Knaap M.S.
        • Jakobs C.
        • Hoffmann G.F.
        • et al.
        D-2-hydroxyglutaric aciduria: further clinical delineation.
        J Inherit Metab Dis. 1999; 22: 404-413
        • Takahashi S.
        • Ishii K.
        • Matsumoto K.
        • et al.
        Cranial MRI and MR angiography in Menkes' syndrome.
        Neuroradiology. 1993; 35: 556-558
        • Jacobs D.S.
        • Smith A.S.
        • Finelli D.A.
        • et al.
        Menkes kinky hair disease: characteristic MR angiographic findings.
        AJNR Am J Neuroradiol. 1993; 14: 1160-1163
        • Ito H.
        • Mori K.
        • Sakata M.
        • et al.
        Transient left temporal lobe lesion in Menkes disease may influence the generation of tonic spasms.
        Brain Dev. 2011; 33: 345-348
        • Bekiesinska-Figatowska M.
        • Rokicki D.
        • Walecki J.
        • et al.
        Menkes' disease with a Dandy-Walker variant: case report.
        Neuroradiology. 2001; 43: 948-950
        • Jamjoom Z.A.
        • Okamoto E.
        • Jamjoom A.H.
        • et al.
        Bilateral arachnoid cysts of the sylvian region in female siblings with glutaric aciduria type I. Report of two cases.
        J Neurosurg. 1995; 82: 1078-1081
        • Martinez-Lage J.F.
        • Casas C.
        • FernÌÁndez M.A.
        • et al.
        Macrocephaly, dystonia, and bilateral temporal arachnoid cysts: glutaric aciduria type 1.
        Childs Nerv Syst. 1994; 10: 198-203
        • Lutcherath V.
        • Waaler P.E.
        • Jellum E.
        • et al.
        Children with bilateral temporal arachnoid cysts may have glutaric aciduria Type 1 (GAT1); operation without knowing that may be harmful.
        Acta Neurochir (Wien). 2000; 142: 1025-1030
        • Forstner R.
        • Hoffmann G.F.
        • Gassner I.
        • et al.
        Glutaric aciduria type I: ultrasonographic demonstration of early signs.
        Pediatr Radiol. 1999; 29: 138-143
        • Nunes J.
        • Loureiro S.
        • Carvalho S.
        • et al.
        Brain MRI findings as an important diagnostic clue in glutaric aciduria type 1.
        Neuroradiol J. 2013; 26: 155-161
        • Santos C.C.
        • Roach E.S.
        Glutaric aciduria type I: a neuroimaging diagnosis?.
        J Child Neurol. 2005; 20: 588-590
        • Twomey E.L.
        • Naughten E.R.
        • Donoghue V.B.
        • et al.
        Neuroimaging findings in glutaric aciduria type 1.
        Pediatr Radiol. 2003; 33: 823-830
        • Oguz K.K.
        • Ozturk A.
        • Cila A.
        Diffusion-weighted MR imaging and MR spectroscopy in glutaric aciduria type 1.
        Neuroradiology. 2005; 47: 229-234
        • Takanashi J.
        • Fujii K.
        • Sugita K.
        • et al.
        Neuroradiologic findings in glutaric aciduria type II.
        Pediatr Neurol. 1999; 20: 142-145
        • Bohm N.
        • Uy J.
        • Kiessling M.
        • et al.
        Multiple acyl-CoA dehydrogenation deficiency (glutaric aciduria type II), congenital polycystic kidneys, and symmetric warty dysplasia of the cerebral cortex in two newborn brothers. Morphology and pathogenesis.
        Eur J Pediatr. 1982; 139: 60-65
        • Neumaier-Probst E.
        • Harting I.
        • Seitz A.
        • et al.
        Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency).
        J Inherit Metab Dis. 2004; 27 (Review): 869-876
        • Frei K.P.
        • Patronas N.J.
        • Crutchfield K.E.
        • et al.
        Mucolipidosis type IV: characteristic MRI findings.
        Neurology. 1998; 51: 565-569
        • Bonavita S.
        • Virta A.
        • Jeffries N.
        • et al.
        Diffuse neuroaxonal involvement in mucolipidosis IV as assessed by proton magnetic resonance spectroscopic imaging.
        J Child Neurol. 2003; 18: 443-449
        • Patel B.
        • Gimi B.
        • Vachha B.
        • et al.
        Optic nerve and chiasm enlargement in a case of infantile Krabbe disease: quantitative comparison with 26 age-matched controls.
        Pediatr Radiol. 2008; 38: 697-699
        • Beslow L.A.
        • Schwartz E.S.
        • Bonnemann C.G.
        Thickening and enhancement of multiple cranial nerves in conjunction with cystic white matter lesions in early infantile Krabbe disease.
        Pediatr Radiol. 2008; 38: 694-696
        • Hittmair K.
        • Wimberger D.
        • Wiesbauer P.
        • et al.
        Early infantile form of Krabbe disease with optic hypertrophy: serial MR examinations and autopsy correlation.
        AJNR Am J Neuroradiol. 1994; 15: 1454-1458
        • Zarifi M.K.
        • Tzika A.A.
        • Astrakas L.G.
        • et al.
        Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe’s disease.
        J Child Neurol. 2001; 16: 522-526
        • Alqahtani E.
        • Huisman T.A.
        • Boltshauser E.
        • et al.
        Mucopolysacharidoses type I and II: new neuroimaging findings in the cerebellum.
        Eur J Paediatr Neurol. 2014; 18: 211-217
        • Zafeiriou D.I.
        • Batzios S.P.
        Brain and spinal MR imaging findings in mucopolysaccharidoses: a review.
        AJNR Am J Neuroradiol. 2013; 34: 5-13
        • Manara R.
        • Priante E.
        • Grimaldi M.
        • et al.
        Closed Meningo(encephalo)cele: a new feature in Hunter syndrome.
        AJNR Am J Neuroradiol. 2012; 33: 873-877