Advertisement

Early neurosensory visual development of the fetus and newborn

      Understanding the processes involved in early visual development in the human fetus and newborn is essential in clinical efforts to support and protect early neurosensory development. While this knowledge is important in the care of the infant and young child, it is of critical importance in the care of preterm and other high-risk infants in the neonatal intensive care unit (NICU). High noise levels, bright lights, sleep deprivation, and long-term sedation all affect the processes of early visual development.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Perinatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hubel D.H
        • Wiesel T.N
        Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
        J Physiol. 1962; 160: 106-154
        • Hubel D.H
        • Wiesel T.N
        The period of susceptibility to the physiological effects of unilateral eye closure in kittens.
        J Physiol. 1970; 206: 419-436
        • Shatz C.J
        • Kirkwood P.A
        Prenatal development of functional connections in the cat's retinogeniculate pathway.
        J Neurosci. 1984; 4: 1378-1397
        • Shatz C.J
        • Stryker M.P
        Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents.
        Science. 1988; 242: 87-89
        • Fenichel G.M
        The neurological consultation.
        in: Neonatal neurology. Churchill Livingston, New York1985: 1-23
        • Fielder A.R
        • Foreman N
        • Moseley M.J
        • et al.
        Prematurity and visual development.
        in: Simons K Early visual development: normal and abnormal. Oxford University Press, New York1993: 485-504
        • Kolb H
        How the retina works—much of the construction of an image takes place in the retina itself through the use of specialized neural circuits.
        Am Sci. 2003; 91: 28-35
        • Reeves A
        Visual adaptation.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 851-862
        • Swaiman K.F
        Neurologic examination of the preterm infant.
        in: Pediatric neurology: principles and practice. 2nd edition. Mosby, St. Louis (MO)1994: 61-72
        • Wong R.O.L
        • Godinho L
        Development of the vertebrate retina.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 77-93
        • Chiu C
        • Weliky M
        The role of neural activity in the development of orientation selectivity.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 117-125
        • Marquardt T
        • Gruss P
        Generating neuronal diversity in the retina: one for nearly all.
        Trends Neurosci. 2002; 25: 32-38
        • Maslim J
        • Webster M
        • Stone J
        Stages in the structural differentiation of retinal ganglion cells.
        J Comp Neurol. 1986; 254: 382-402
        • Mason C
        • Erskine L
        The development of decussations.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 94-107
        • Chapman B
        The development of I-specific segregation in the retino-geniculo-striate pathway.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 108-116
        • King A.J
        The Wellcome Prize Lecture. A map of auditory space in the mammalian brain: neural computation and development.
        Exp Physiol. 1993; 78: 559-590
        • Mays L.E
        • Sparks D.L
        Dissociation of visual and saccade-related responses in superior colliculus neurons.
        J Neurophysiol. 1980; 43: 207-232
        • Gandhi N.J
        • Sparks D.L
        Changing views of the role of superior colliculus in the control of gaze.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 1449-1465
        • Hubel D.H
        Eye, brain and vision. Scientific American Library, New York1988
        • Tucker T.R
        • Fitzpatrick D
        Contributions of vertical and horizontal circuits to the response properties of neurons in primary visual cortex.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 733-746
        • Kennedy H
        • Burkhalter A
        Ontogenesis of cortical connectivity.
        in: Chalupa L.M Werner J.S The visual neurosciences. MIT Press, Cambridge, MA2004: 146-158
        • Penn A.A
        • Shatz C.J
        Principles of endogenous and sensory activity-dependent brain development. The visual system.
        in: Lagercrantz H Hanson M Evrard P Rodeck C The newborn brain: neuroscience and clinical applications. Cambridge University Press, New York2002: 204-225
        • Penn A.A
        • Riquelme P.A
        • Feller M.B
        • et al.
        Competition in retinogeniculate patterning driven by spontaneous activity.
        Science. 1998; 279: 2108-2112
        • Penn A.A
        • Shatz C.J
        Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development.
        Pediatr Res. 1999; 45: 447-458
        • Penn A.A
        Early brain wiring: activity-dependent processes.
        Schizophr Bull. 2001; 27: 337-347
        • Palmer S.E
        Processing image structure.
        in: Vision science: photons to phenomenology. MIT Press, Cambridge, MA1999: 145-199
        • Feller M.B
        Spontaneous correlated activity in developing neural circuits.
        Neuron. 1999; 22: 653-656
        • Hogan D
        • Roffwarg H.P
        • Shaffery J.P
        The effects of 1 week of REM sleep deprivation on parvalbumin and calbindin immunoreactive neurons in central visual pathways of kittens.
        J Sleep Res. 2001; 10: 285-296
        • Weliky M
        • Katz L.C
        Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity.
        Nature. 1997; 386: 680-685
        • Goodman C.S
        • Shatz C.J
        Developmental mechanisms that generate precise patterns of neuronal connectivity.
        Cell. 1993; 72: 77-98
        • Wong R.O
        • Meister M
        • Shatz C.J
        Transient period of correlated bursting activity during development of the mammalian retina.
        Neuron. 1993; 11: 923-938
        • Meister M
        • Wong R.O
        • Baylor D.A
        • et al.
        Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina.
        Science. 1991; 252: 939-943
        • Lickliter R
        Atypical perinatal sensory stimulation and early perceptual development: insights from developmental psychobiology.
        J Perinatol. 2000; 20: S45-S54
        • Columbus R.F
        • Lickliter R
        Modified sensory features of social stimulation alter the perceptual responsiveness of bobwhite quail chicks (Colinus virginianus).
        J Comp Psychol. 1998; 112: 161-169
        • Sleigh M.J
        • Lickliter R
        Augmented prenatal visual stimulation alters postnatal auditory and visual responsiveness in bobwhite quail chicks.
        Dev Psychobiol. 1995; 28: 353-366
        • Stryker M.P
        • Sherk H
        • Leventhal A.G
        • et al.
        Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours.
        J Neurophysiol. 1978; 41: 896-909